
Dynamic Networked Organizations
for Software Engineering

Damian A. Tamburri
VU University Amsterdam

De Boelelaan 1081a
Amsterdam, The Netherlands

d.a.tamburri@vu.nl

Remco de Boer
ArchiXL

Nijverheidsweg Noord 60-27
3812 PM, Amersfoort
rdeboer@archixl.nl

Elisabetta di Nitto
Politecnico di Milano

Piazza Leonardo da Vinci 32
20133, Milano

dinitto@elet.polimi.it
Patricia Lago

VU University Amsterdam
De Boelelaan 1081a

Amsterdam, The Netherlands
p.lago@vu.nl

Hans van Vliet
VU University Amsterdam

De Boelelaan 1081a
Amsterdam, The Netherlands

hans@cs.vu.nl

ABSTRACT
Current practice in software engineering suggests a radi-
cal change in perspective: where once stood fixed teams
of people following a development plan, now stand just-in-
time Dynamic Networked Organizations (DyNOs), adopting
a common flexible strategy for development, rather than a
plan. This shift in perspective has gone relatively unno-
ticed by current software engineering research. This paper
offers a glimpse at what processes and instruments lie be-
yond “current” software engineering research, where study-
ing emergent DyNOs, their creation and steering becomes
critical. To understand the underpinnings of this evolu-
tion, we explored a simple yet vivid scenario from real-life
industrial practice. Using scenario analysis we elicited a
number of social and organizational requirements in work-
ing with DyNOs. Also, comparing our evidence with lit-
erature, we made some key observations. First, managing
DyNOs makes organizational requirements a first-class en-
tity for development success. Second, research in software
engineering should be invested in understanding and gov-
erning the DyNOs behind the software lifecycle.

Categories and Subject Descriptors
K.7.2 [Organizations]: Miscellaneous; D.2.9 [Software En-
gineering]: Management—Programming teams, Software
quality assurance, Software process models, Life cycle

General Terms
Theory, Management, social Factors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SSE ’13, August 18, 2013, Saint Petersburg, Russia
Copyright 13 ACM 978-1-4503-2313-0/13/08 ...$15.00.

Keywords
Global Software Engineering, Networked Organizations, So-
cial Software Engineering

1. INTRODUCTION AND MOTIVATION
The state of practice suggests that software engineering

is now in the hands of many organisations, producing soft-
ware in a networked fashion. Outsourcing [17], Open-Source
Software Foundations [4] and Global Software Engineering
(GSE) [9] are examples of how organizations constantly net-
work with others to produce software. Moreover, the in-
crease of scale and dynamicity of markets force these net-
worked organizations to emerge and adapt extremely rapidly
to organisational changes during the software lifecycle (e.g.
employee or organizations turnover). The result is a dy-
namic networked organization (DyNO) reacting extremely
rapidly to changes (in the internal structure or surrounding
context). Organizations in the DyNO cooperate following a
development strategy (i.e. a high-level plan in conditions
of uncertainty), rather than sharing a plan (i.e. a fixed
set of actions in pursuit of a certain goal). For example,
we witnessed first-hand many small and medium enterprises
(SMEs) team-up very dynamically and extremely rapidly, to
share efforts during GSE, strategically agreeing development
increments every step of the way. What results is a DyNO
[25] of SMEs, able to adapt quickly (e.g. by including ad-
ditional partners) as more requirements fluidly emerge from
the development context.
The implications behind this dynamism are vast and need to
be studied if future software engineering is to be successful.
First, new coordination and steering needs are beyond the
common principles and practices, e.g. in GSE [7, 24]. For
example, coordination would require a shared vision and
agreement on software architectures, while corporate poli-
cies would otherwise protect them as secrets from more open
collaborators (e.g. open-source communities). Also, the so-
cial and socio-technical implications [2] in the scenario are
far from clear. For example, on-the-fly collaboration could
leave open “skill holes” when terminated. this could lead to
maintenance problems in the future (since the skills are not
in the community anymore).
In this paper we explore a real-life industrial scenario in

which a DyNO was crafted and continuously evolved during
software engineering. From the scenario we elicited social
and organizational requirements. Then, comparing with ref-
erence models (e.g. 3C model [22]) from current software en-
gineering research and practice, we made three key observa-
tions. First, managing DyNOs requires explicit engineering
of organizational requirements [20], i.e. the set of social and
organizational needs that shape the organizational structure
[25] behind the software lifecycle. These requirements can
only be satisfied through continuous evolution [11] of the
networked organization [26, 27].
Second, current software engineering research is focused on
understanding software lifecycle problems [19, 6], rather dis-
regarding the governance of the DyNOs lurking behind.
Third, two processes are critical for managing DyNOs: cre-
ation and adaptation for continuous evolution. Both pro-
cesses introduce many unexplored challenges and factors for
GSE and software engineering in general [18].
We conclude that software engineering is on the brink of an
evolution. The evolution features just-in-time DyNOs for
software development, e.g. using SMEs as part of a “virtual
enterprise” [15]. Much research is needed to understand and
support the social and organizational underpinnings of this
evolution.

2. PREVIOUS AND RELATED WORK
We carried out work in the understanding of dynamic

communities of developers working in GSE [24, 23, 26]. In
previous work we explored the state of the art in social net-
works and organizations literature [25]. These works were
a necessary step to understanding communities working on
global software [26]. Also, many studies in GSE revolve
around social community aspects. For example, distance
limits informal communication within global communities
[1], which in turn impedes the building of trust in virtual
teams [5]. This limits the degree to which implicit knowl-
edge is shared among teams, and interferes with the ability
to solve process issues [8, 13]. Temporal distance also re-
sults in delays, e.g. in responding to inquiries or delivery.
This can lead to incorrect assumptions and again, mistrust
among teams due to perception of lack of commitment [10].
Language and cultural distance can cause technical misun-
derstandings of goals, tasks and requirements, and inhibit
developers’ awareness [6] and the formation of trust.
Moreover, there are several frameworks that we used as a
reference to interpret what we found in our scenario. For
example, we compared our results with organizational styles
from open-source communities [4, 21]. Also, we considered
concepts from Ultra Large Scale (ULS) systems theory [16],
e.g. [12]. In [12] the authors offered a lens to understand
many of the complexities emerging in our scenario. In addi-
tion, distributed and multi-site governance models [14] un-
covered the implications for governance in a distributed set-
ting. We used these models to interpret the novelties of our
dynamic networked organization scenario. Finally, collabo-
ration reference models, e.g. the 3C model from [22], offers a
valuable map to understand the variables and requirements
in distributed collaboration and communication.

3. CASE STUDY
This section outlines our case scenario and offers details

on the DyNO involved. Then, this section introduces the
organizational and social challenges involved in the scenario
(e.g. the higher requirements for trust and visibility of tasks
and tasks dependencies). Finally, the section introduces the
organizational network evolution that was triggered by the
outlined challenges (e.g. the adoption of a negotiated busi-
ness process).

We investigated an organizational scenario from one of
our industrial partners, an SME by the name of ArchiXL1.
To gather needed data, we used a focus group involving two
project managers responsible for the project at hand. Th-
rough an open, semi-structured discussion we gathered evi-
dence describing ArchiXL’s development scenario featuring
DyNOs. Second, we analysed results through factor and
scenario analysis. Finally, we operated systematic map-
pings between our data and current literature outlined in
Section 2.

The scenario discusses the design and implementation of
a semantic wiki, including the migration of existing content
to a semantic structure and the design and implementation
of innovative user interaction, i.e. the ways in which all
possible end-users might want to exploit the deployed sys-
tem. In its most“crowded” iteration the development DyNO
involved 4 different organizations, in addition to 2 client or-
ganizations. All organizations were different in expertise
and location. The minimum distance between organizations
was in the order of tens of km, while the maximum distance
spanned two continents.
The goals of the client were as follows: (a) revise the current
version of the encyclopaedia using a semantic-wiki based
technology; (b) improve the diversity and quality of user
interactions with the encyclopaedia.

The project rolled out in three phases:

1. Project Goal Analysis (approx. 1 month): Archi-
XL and clients discussed the project mission to identify
objectives and agree on a project strategy. From this
phase, an important organizational quality requirement
emerged, namely missing expertise in Interaction De-
sign [32]. This required ArchiXL to include an addi-
tional organization with the required expertise in the
”development network” at the start of phase 1.

2. Requirements analysis and solution design (2.5
months): In a series of face-to-face workshops, the
user interaction and the solution architecture were de-
signed. About half of the workshops focused on inter-
action design and were led by the organization that
was added as a result of phase1. The other half of the
workshops focused on the architecture of the system-
to-be and were led by ArchiXL. From this phase, addi-
tional organizational requirements emerged, most no-
tably the need to scale up development workforce, to
gain expertise in Javascript, and to get on board ad-
ditional expertise in the area of animation design.

3. Software Development (9.5 Months): ArchiXL
kicked-off this development phase after the involve-
ment of two additional partners: (1) Animation Spe-
cialists Organization; (2) Development Support Orga-
nization.

Fig. 1 depicts the process through which the DyNO grew
across the two phases of ArchiXL’s project. Initially, clients
1http://www.archixl.nl/

CLIENT
ORGANIZATION

ArchiXL

Missing Expertise -
Interaction Design

Too Much Work for
ArchiXL alone

 Missing Expertise -
Animations

Dynamic
Requirements - Org.

Slack Needed

 Org. Slack - Agile
Methods

NEW
ORGANIZATION 1

ADDED

NEW
ORGANIZATION 3

ADDED

MODIFIED
ORGANIZATION 3

Missing Expertise -
JS

NEW
ORGANIZATION 2

ADDED

PHASE 2
PHASE 2

PHASE 3

PHASE 2

Turnover - Interaction
Design

PHASE 3

MODIFIED
ORGANIZATION 1

PHASE 3

Organizational
Requirements

ORGANIZATIONS

Cause/Effect
Relations

Practice

LEGENDA

Flexible
Iterations
AgendaPHASE 1

PHASE 1

Figure 1: DyNOs forming in our scenario.

and ArchiXL sat to define the scope, objectives and budget
for the project. A flexible development strategy and agenda
was defined, to determine the increments needed for devel-
opment. Also, a series of organizational requirements caused
the addition of multiple partners at different points in time
within the development agenda. Finally, emerging organi-
zational requirements (employee turnover) caused modifica-
tions to the organizational structure in some organizations
(e.g. Organizations 1 and 3 changed employees).

3.1 Social and Organizational Challenges
This section outlines the key social and organizational

challenges we identified studying our case scenario. The fol-
lowing list elaborates on the social and organisational fea-
tures emerging from the scenario (highlighted in bold):

• The development problem was extremely dynamic, i.e.
featuring extremely innovative requirements with un-
clear and dynamic definitions. These requirements
called for many skills in organizations other than ArchiXL.
In addition, requirements were impossible to fully spec-
ify beforehand. Equally, requirements were explorative
in nature (i.e. featuring unforeseen conditions and po-
tential system users). This required the definition of
a flexible development agenda or strategy, rather than
a fixed plan. This caused distress and skepticism
in the clients who expected a classic fixed “plan” with
milestones and deliverables. Quoting from our focus
group minutes: “We divided the beast in iterations. In
each we drew what we would be doing. For the first it
was very clear, for the second it was somewhat clear,
for the third one it was pretty much vague, and so
on. So for each iteration we had a strategy on how
to pursue the global mission, say - this has to be done,
and this and this. The customer in the very beginning
didn’t really like that, they wanted a plan. They wanted
to have a well-laid plan, with a timeline and day-to-day
schedule. We were able to convince that that was not
the right approach for this project.”.

• Again, the nature of the project required the adop-
tion of agile methods (e.g. bi-weekly plenary sessions,

reflection on bi-weekly increments, task-centric devel-
opment). This choice was forced by two critical orga-
nizational requirements: (a) common vision on the
project shared by all organizations in the development
network; (b) mutual trust among organizations in-
volved. Quoting from our focus group minutes: “Even
though we had time issues, budget issues, we never run
into quality issues. Because that’s the one thing that
we really fixed and all agreed on. We would never di-
minish any of the quality no matter what, and everyone
agreed on that. And everyone accepted that if more ef-
fort had to be put in, that was actually a calculated
risk. That had to be done”.

• The many organizations involved and the emerging or-
ganizational requirements rapidly resulted in a com-
plex DyNO, long before any software code was writ-
ten or design specifications worked out. This complex-
ity forced ArchiXL to use the DyNO as a constraint
to design the system. Moreover, requirements were ex-
tremely dynamic and definitely not clear right from the
start. This forced social and organizational rip-
ple effects to be handled on-the-fly. “the project had
many requirements with expertise that we don’t have,
like JavaScript for example - and it was a lot of work!
This was the trigger to start looking for collaborators.
The absence of all the needed organizations and peo-
ple right from the start, i suspect was one of the main
problems that we faced. We discovered this [the com-
plete set of organizational needs] too late. If we had
been able to have all organisations at the same table
from the very beginning, when we were still defining
what the project would look like, our life would have
been easier”.

• The project had an extremely tight budget and time-
line. All contracted third-party organizations were
hired on a fixed-price basis. Scope, budget, time and
quality constraints were fixed as well and were agreed
upon signing of contract. Consequently, risks in the
analysed project were extremely high. Quoting from
our focus group minutes: “Mind you, the scoping and

money were made clear upon agreements. And by do-
ing that, organizations accepted a certain type of risk
that they couldn’t pull through the project”. Rather
than demoralising the networked organization, each
SME involved was pulled by its pride to deliver ex-
pected quality under the agreed circumstances and
constraints. Engagement across the whole network
was kept high by this pride component. Quoting from
our focus group minutes: “I just recall the quote from
one of the developers organizations, with a sort of spread
of enthusiasm and pride saying - I don’t know how you
managed but you kept me engaged and working late to
pursue my goals. These small organizations are very
focused at what they do. And they also have a sense
of pride, sort of personal loyalty to what’s the project.
And that kept the project going”.

• Every time a new organization was included in the
DyNO, it had a different level of information and un-
derstanding on the project. As part of the inclusion
within the DyNO, all organisations negotiated a new
business process (i.e. a set of activities by all involved
participants) for the DyNO. The process of negotia-
tion made the project extremely fragile and volatile.
In this negotiation, each organisation was forced to
put away its domain-specific cookbook. This caused
disagreement and distress, every time the DyNO
“adapted”. Quoting from our focus group minutes:
“[With every new partner] It took three to four weeks
for every one to be at the same level of information.
This period was tricky, at any point in this time we
could have lost the project. A new partner would obvi-
ously initially lack the knowledge that had been shared
and generated earlier in the project. Perhaps due to
this, some would also bring with them a way of working
that they were used to and which they assumed would fit
this project too - which was not always the case. They
expected to work with those and resisted the change
forced by the innovation in our scenario. They were
stuck on their cookbook. As soon as they let go of their
way of working and what they thought was the right
approach. And we leaned back a little bit and started
thinking together what would be the right approach in
this scenario, things started to get smoother”.

3.2 Ad-Hoc Organizational Practices
The description above elaborates on a rather vivid net-

worked organization. This organization required for the
adoption of ad-hoc practices to handle both complexity and
fragility. Fig. 2 depicts the practices adopted and the effects
they caused on the networked organization.

First, rather than designing a software architecture from
functional/non-functional requirements (“classic”approach),
ArchiXL used a “Conway in reverse” approach. Conway’s
Law [3] was used as an explicit software design constraint.
Investigating organizational requirements first, ArchiXL used
these explicitly to finalise the organizational structure and
then use this to drive the definition of the software archi-
tecture. This allowed to smoothly organise the network and
allocate tasks to skills effectively [18].
Second, all organizations involved were networked with each
other and involved in each other’s work through a shared,
task-centric view. This transformed them from a set of
loose organizational silos into a mesh of collaborative partner

nodes. This increased collaboration and engagement across
the network. This was key to increasing mutual trust.
Third, a task-centric view was adopted to divide work among
collaborating participants in the networked organization. The
task-centric view was shared among all participants and up-
dated real-time. This allowed all partners to be aware and
view all concurrent tasks allocated to fellow companies, thus
increasing trust across the network.
Fourth, the networked organization inherited many agile
practices from the Scrum way of working [29] (e.g. bi-weekly
plenary meetings). These were mostly used to reflect and
collaboratively solve tasks that could not be tackled in their
allotted timeframe.
Fifth, finally, the flexible iterative development agenda was
revisited bi-weekly, upgraded and agreed upon during reflec-
tion meetings. The networked organization agreed on the
shared agenda increment. This allowed a plan to emerge
spontaneously as the project unfolded.

4. DISCUSSION: WHAT LIES BEYOND?
To analyse our results we elicited a list of requirements

from our scenario and operated a preliminary mapping with
collaboration and governance frameworks from software en-
gineering and GSE research [22, 14, 12]. As a result, we
made initial observations and remarks (see Sect. 4.2). In
addition, we compared with traditional software engineer-
ing approaches and evaluated the key differences.

4.1 Requirements in Developing with DyNOs
Social and organizational requirements evident in our sce-

nario are summarised on Table 1. Column 1 and 2 provide
requirements label and name, respectively. Column 3 elab-
orates a description, based on the evidence from our case
scenario.

4.2 Observations and Remarks
To evaluate the dynamicity in our scenario on the three

key dimensions for GSE projects, we mapped our require-
ments with the model from [22] (see Fig. 3 - square boxes
contain our requirements labels from Table 1). More specif-
ically, a requirement was mapped to a 3C model concept if
the challenge represented by the requirement fell under that
concept according to our industrial contacts. The 3C model
states that three basic activities are dominant in (networked)
organizations and their operations for software production:
(a) communication with peers to realise organizational ac-
tivities; (b) coordination of activities and tasks to achieve
planned business goals; (c) cooperation on tasks that require
concurrent and shared work/expertise. Underpinning these
dominant activities is awareness [6], i.e. the perceived under-
standing of the current organizational state. The mapping
in Figure 3 shows that DyNOs introduce many challenges
for concepts in the 3C model. We made two observations.
First, dynamicity in our scenario required ArchiXL to re-
fine governance across all dimensions of the 3C model. New
organizational requirements produced three effects: (a) com-
pounded previous requirements, further complicating aware-
ness maintenance across the development network; (b) re-
quired additional cooperation on new interdependent tasks;
(c) required making explicit task-dependencies to aid coordi-
nation. More research is needed on all the above effects. For
example, the best practices we elicited from ArchiXL’s sce-

Table 1: Social and Organizational Requirements for DyNOs
Label Name Requirement Description
R1 Organizational Structure DyNOs feature a complex and rapidly changing organisational structure.

The structure must be made explicit through abstractions that allow
measurement and adaptation. To instrument adaptation for DyNOs, the
connected organizational requirements need to be managed explicitly, to
ensure project success.

R2 Organizational Structure
Traceability

Organizational structures are generated through organizational (i.e.
socio-technical) decisions that match organizational requirements. Therefore,
organizational requirements need to drive the software process. Also
requirements and decisions taken to match them, need to be tracked much
like common software projects keep track of software requirements and
architecture decisions.

R3 Task-Centric Project
Visualization

New and changing quality requirements necessitate cooperation on old and
new tasks, to be shared across the development network. Visualising and
(re-)allocating tasks and task dependencies is imperative.

R4 Reflection and Strategy for
Incremental Planning

DyNOs are incompatible with “classic” project plans [28]. DyNOs need to
agree on a schedule of fixed meetings and strategy in which to devise and
divide work in a more agile and adaptable way. For example, ArchiXL used
reflection meetings to decide work flexibly every iteration (see Fig 1).

R5 Awareness Maintenance Awareness maintenance must become part of product maintenance
procedures and costs. Maintaining awareness high across the development
network makes sure that the networked organization stays agile and is able
to react to new and changing organizational requirements. For example
ArchiXL fostered trust in partners by granting open-access to task
information and work distribution across the network (see Fig. 2).

R6 Ad-Hoc Business Process
Sharing

DyNOs can reach success only by acting as an organized whole. In so doing,
members of DyNOs agree on a shared business process to enact for
development. For example, ArchiXL agreed on a shared business process
with newcoming partners (see Sect. 3.1).

R7 Open-Source-Like
Community Support

DyNOs exhibit many similarities with open-source communities. Pride,
engagement and committment to the project become a much stronger pull
than delivery or contract value. These community aspects need to be
fostered. For example, ArchiXL used reflection meetings and other practices
from agile methods to foster engagement (see Sect. 3.1).

R8 Core-Periphery Structure
Explicitation

DyNOs exhibit a core-periphery structure [14]. This needs to be made
explicit and supported throughout the project lifecycle. For example,
ArchiXL as core contributor, used a task-centric view to visualize the
distributed division of work with collaborating organizations (see Fig. 2).

R9 Explicit Open-Teams
Support

DyNOs work as an organised whole, rather than a sum of loosely cooperating
parts with tight decoupling. For example in ArchiXL, tasks were shared and
incremental plans drawn and rethought at every iteration. Also, the
organizational structure was adapted at every iteration (see Sect. 3.1).

R10 Organizational and Systems
Requirements Slack

DyNOs need to prepare for the flexible implementation of both systems and
organizational requirements. For example, ArchiXL was facing the presence
of ever-evolving organizational and functional requirements. Both types of
requirements needed explicit addressing (e.g. by adapting the DyNO and the
system under development).

R11 Explorative Requirements
Engineering

DyNOs are not assembled for every type of project. For example, ArchiXL
was facing the presence of ever-evolving organizational and functional
requirements. Both types of requirements needed explicit addressing. This
and similar explorative scenarios likely require DyNOs.

R12 User-Centric Development DyNOs likely work for the design and development of innovative, user-centric
systems. These systems involve tackling a wider nature of requirements. For
example, ArchiXL specifically mentioned that the client was trying to
address emerging end-user needs with very specific and demanding
characteristics. This forced ArchiXL and its partners to forget their classic
cook-book and think up new ways to elicit and satisfy requirements from
both the customer and the end-users.

R13 Explicit Conway Approach DyNOs require the use of the Conway effect [3], in an explicit way. A clear
picture of the organizational structure emerging in the networked
organization must be used to drive the definition of workable software
architectures. For example, in ArchiXL, some architecture decisions were
explicitly dictated by division-of-work and work dependency
requirements(see Fig. 2).

R14 DyNO Creation and
Continuous Evolution

DyNOs require mechanisms to support the creation, visualization and
continuous adaptation of networked organizations. Dynamic internal and
external change can trigger network adaptation (e.g. by requiring the
inclusion of additional partners). Change needs to be tracked and visualised
to increase awareness. Effects produced on the DyNO and the assigned
lifecycle need to be tracked.

Flexible
Iterations
Agenda

Incremental
Development Strategy

Definition

Conway in
Reverse

Sharing a
Task-Centric

View
Weekly

Plenaries
Meshing

Silos into a
Web

Org. Struct.
Explicitly drives

Architecture

Adapt the
Business
Process

Foster
Trust through

a shared vision

Collaborative Problem
Solving using network-

wide expertise

Agile organization
through Strategy-based

Emergent Plan

Complex DyNO Task-Dependencies
and Coordination

Organizational
Requirements

ORGANIZATIONS

Cause/Effect
Relations

Practice

LEGENDA

Figure 2: DyNOs management practices in our scenario.

nario can be further studied to determine their effectiveness
in similar scenarios. Second, ArchiXL figured out quickly
that agile methods produced two key benefits: (a) reflection
sessions at the end of every iteration helped in reasoning
on new organizational requirements for next iterations, i.e.
to refine the development strategy; (b) frequent meetings
helped increasing and maintaining high awareness across the
DyNO, i.e. helped in awareness management. This suggests
that the rise of agile methods in industrial practice could be
due to an increased need for handling DyNOs.

Also, to understand the structural requirements resulting
from our scenario, we compared with frameworks from [14]
and [12]. This comparison revealed that DyNOs need vi-
sualisation and explicit support to emergent core-periphery
organizational structures. However, visualisation and ex-
plicit support should model organizations, abstracting from
the social network underneath. This entails developing task-
centric and organizations-aware models to divide labour across
a distributed development network. Task dependencies and
automated task-progress tracking must be developed to sup-
port development with DyNOs.

Many requirements from our list however, cannot imme-
diately map on the 3C model or the other literature we con-
sidered. This suggests that the “organization” concept is a
pervasive and implicit inhabitant of the 3C model. Some un-
charted research paths lie ahead. For example, from R10 and
R11, how can DyNOs be made to function even though orga-
nizational requirements are not clear ahead of start? Also,
from R11, what is an ideal Explorative Requirements Engi-
neering approach to be used in DyNOs? or, from R14, how
does the practice of software architecting change in response
to the continuous (co-)evolution of its DyNO?

4.3 Key Differences with Traditional Software
Engineering

Comparing the operations of DyNOs with traditional ap-
proaches we identified four key differences.

First, traditional engineering approaches use incremental-
iterative development of requirements or tasks. For example,
in agile methods incremental and iterative task-solving is
used to carry out development. Conversely, DyNOs have no

R1,R2,
R3,R4,
R7

R1,R2,R3,
R4,R6,R8,
R9

R1,R2,R3,
R6,R7,R13

R1,R2,R3,
R4,R5,

Figure 3: 3C Model from [22], as mapped with our
requirements.

reference process model. Rather the process emerges dy-
namically, based on organizational requirements that alter-
nate their way during development. For example, ArchiXL
switched between classic plan-based iterative/incremental
development with a flexible task-based agenda to accommo-
date new organizational requirements. Also, DyNOs com-
bine incremental and iterative approaches with what can be
called paused-execution development, i.e. stop developing
tasks when people collectively understand that coordination
is too difficult in the current state.

Second, DyNOs start their operation following a Reverse-
Conway regime. Following this regime means studying
the organizational structure strengths, weaknesses oppor-
tunities and threats to infer architecture and coordination
requirements. This also means that DyNOs’ initial config-
uration almost becomes the software architecture. For ex-
ample, ArchiXL chose to draw and allocate tasks and their
dependencies explicitly following the organizational bound-
aries and their characteristics.

Third, traditional software engineering organizations are
not required to change the internal development business
process. DyNOs negotiate ad-hoc business processes
shared among participants. The process is built ad-hoc and
adapted as needed. For example, ArchiXL and partners
needed to renegotiate the business process currently in place,
every time a new partner was added to the network.

Fourth, traditional software engineering is planned and or-
ganised around a clear vision of the system to be developed.
DyNOs first require eliciting organizational-social structure
[25] needs. For example, ArchiXL started development be-
fore having a clear vision of needed organizational needs.
This forced a paused-execution, to backtrace organizational
needs and use them to increase the development network.

5. CONCLUSION
This paper explores a real-life scenario in which a dynamic

networked organization, which we call a DyNO, was created
by SMEs to collaboratively work on a GSE project. We anal-
ysed available data eliciting a list of social and organizational
requirements. Comparing these requirements with frame-
works for collaboration and governance revealed some ini-
tial observations. For example, numerous unexplored venues
for research beyond current software engineering and GSE.
Also, the organization and organizational requirements for
software projects seem to be an absent inhabitant of the 3C
model from [22]. We conclude that additional research must
be invested in how software engineering is carried out using
DyNOs in continuous dynamic evolution. Finally, new re-
quirements engineering and design techniques are need to
cope with functional-/non-functional as well as organiza-
tional requirements for engineering with DyNOs. These new
techniques, as evidenced by our case scenario, are essential
for development success.

6. REFERENCES
[1] L. C. Abrams, R. Cross, E. Lesser, and D. Z. Levin.

Nurturing interpersonal trust in knowledge-sharing
networks. The Academy of Management Executive,
17(4):64–, 2003.

[2] C. Bird, N. Nagappan, H. Gall, B. Murphy, and
P. Devanbu. Putting it all together: Using
socio-technical networks to predict failures. In
Proceedings of the 2009 20th International Symposium
on Software Reliability Engineering, ISSRE ’09, pages
109–119. IEEE Computer Society, 2009.

[3] M. E. Conway. How do committees invent.
Datamation, 14(4):28–31, 1968.

[4] K. Crowston, K. Wei, J. Howison, and A. Wiggins.
Free/libre open-source software development: What
we know and what we do not know. ACM Comput.
Surv., 44(2):7, 2012.

[5] D. Damian. Stakeholders in global requirements
engineering: Lessons learned from practice. IEEE
Software, pages 21–27, 2007.

[6] D. Damian, L. Izquierdo, J. Singer, and I. Kwan.
Awareness in the wild: Why communication
breakdowns occur. In ICGSE, pages 81–90. IEEE,
2007.

[7] C. Ebert and P. D. Neve. Surviving global software
development. IEEE Software, 18(2):62–69, 2001.

[8] J. D. Herbsleb. Global software development at
siemens: Experience from nine projects. In
Proceedings of the International Conference on
Software Engineering (ICSE 05), pages 524–533, 2005.

[9] J. D. Herbsleb. Global software engineering: The
future of socio-technical coordination. In L. C. Briand
and A. L. Wolf, editors, FOSE, pages 188–198, 2007.

[10] J. D. Herbsleb and A. Mockus. An empirical study of
speed and communication in globally distributed
software development. IEEE Transactions on Software
Engineering, 29(6):481–94, 2003.

[11] http://www.opengroup.org/projects/soa book/. Soa
source book.

[12] R. Kazman and H.-M. Chen. The metropolis model
and its implications for the engineering of software
ecosystems. In G.-C. Roman and K. J. Sullivan,
editors, FoSER, pages 187–190. ACM, 2010.

[13] F. Lanubile, C. Ebert, R. Prikladnicki, and
A. Vizcaino. Collaboration tools for global software
development. IEEE Software, 27:52–55, 2010.

[14] C. Manteli, H. van Vliet, and B. van den Hooff.
Adopting a social network perspective in global
software development. In ICGSE, pages 124–133.
IEEE Computer Society, 2012.

[15] N. Narendra, L.S. Le, A. Ghose, and G. Sivakumar.
Towards an architectural framework for
service-oriented enterprises. In A. Ghose, H. Zhu,
Q. Yu, A. Delis, Q. Sheng, O. Perrin, J. Wang, and
Y. Wang, editors, Service-Oriented Computing -
ICSOC 2012 Workshops, volume 7759 of Lecture
Notes in Computer Science, pages 215–227. Springer
Berlin Heidelberg, 2013.

[16] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough,
R. Linger, T. Longstaff, R. Kazman, M. Klein,
D. Schmidt, K. Sullivan, and K. Wallnau.
Ultra-Large-Scale Systems - The Software Challenge
of the Future. Technical report, Software Engineering
Institute, Carnegie Mellon, June 2006.

[17] R. Prikladnicki and J. L. N. Audy. Managing global
software engineering: A comparative analysis of
offshore outsourcing and the internal offshoring of
software development. IS Management, 29(3):216–232,
2012.

[18] I. Richardson, V. Casey, J. Burton, and F. McCaffery.
Global software engineering: A software process
approach. In I. Mistrik, J. Grundy, A. van der Hoek,
and J. Whitehead, editors, Collaborative Software
Engineering. Springer, January 2010.

[19] R. Sangwan, M. Bass, N. Mullick, D. J. Paulish, and
J. Kazmeier. Global Software Development Handbook
(Auerbach Series on Applied Software Engineering
Series). Auerbach Publications, Boston, MA, USA,
2006.

[20] I. Sommerville. Software Engineering. Addison-Wesley,
Harlow, England, 9. edition, 2010.

[21] R. Stallman. Why Open Source misses the point of
Free Software. Viewpoints, 52(6):31–33, 2009.

[22] J. Swart and S. C. Henneberg. Dynamic knowledge
nets - the 3c model: exploratory findings and
conceptualisation of entrepreneurial knowledge
constellations. J. Knowledge Management,
11(6):126–141, 2007.

[23] D. Tamburri and P. Lago. Supporting communication
and cooperation in global software development with
agile service networks. In Software Architecture,
Lecture Notes in Computer Science, pages Vol. 6903,
236–243. Springer Berlin / Heidelberg, 2011.

[24] D. A. Tamburri, E. di Nitto, P. Lago, and H. van
Vliet. On the nature of the GSE organizational social

structure: an empirical study. proceedings of the 7th
IEEE International Conference on Global Software
Engineering, pages 114–123, 2012.

[25] D. A. Tamburri, P. Lago, and H. van Vliet.
Organizational social structures for software
engineering. pages 1–35. To appear on ACM
Computing Surveys, 2012.

[26] D. A. Tamburri, P. Lago, and H. van Vliet. Uncovering
latent social communities in software development.
IEEE Software, 30(1):29 –36, jan.-feb. 2013.

[27] D. A. Tamburri, P. Lago, and H. v. Vliet. Service

networks for development communities. In Proceedings
of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 1253–1256, Piscataway,
NJ, USA, 2013. IEEE Press.

[28] J. C. van Vliet. Software engineering - principles and
practice. Wiley, 1993.

[29] L. Williams, G. Brown, A. Meltzer, and N. Nagappan.
Scrum + engineering practices: Experiences of three
microsoft teams. In ESEM, pages 463–471. IEEE,
2011.

