
Constructing a Reading Guide for Software Product Audits

Remco C. de Boer and Hans van Vliet
Department of Computer Science

Vrije Universiteit, Amsterdam, the Netherlands
{remco, hans}@cs.vu.nl

Abstract

Architectural knowledge is reflected in various artifacts
of a software product. In the case of a software product
audit this architectural knowledge needs to be uncovered
and its effects assessed, in order to evaluate the quality of
the software product. A particular problem is to find and
comprehend the architectural knowledge that resides in the
software product documentation. The amount of documents,
and the differences in for instance target audience and level
of abstraction, make it a difficult job for the auditors to find
their way through the documentation. This paper discusses
how the use of a technique called Latent Semantic Analy-
sis can guide the auditors through the documentation to the
architectural knowledge they need. Using Latent Semantic
Analysis, we effectively construct a reading guide for soft-
ware product audits.

1. Introduction

The architectural design of a software product and the
architectural design decisions taken play a key role in soft-
ware product audits. Architectural design decisions and
their rationale provide for instance insight into the trade-
offs that were considered, the forces that influenced the de-
cisions, and the constraints that were in place. The architec-
tural design that is the result of these decisions allows for
comprehension of such matters as the structure of the soft-
ware product, its interactions with external systems, and the
enterprise environment in which the software product is to
be deployed. Following a recent trend in software architec-
ture research (e.g. [5, 12, 13, 20]) we refer to the collection
of architectural design decisions and the resulting architec-
tural design as ‘architectural knowledge’.

For a given software product there is no single source
that contains or provides all relevant architectural knowl-
edge. Instead, architectural knowledge is reflected in var-
ious artifacts such as source code, data models, and doc-
umentation. A complicating factor in distilling relevant

architectural knowledge from software product documen-
tation is the fact that there are often many different doc-
uments. Each of these documents is tailored to specific
stakeholders and different documents can therefore reflect
architectural knowledge at different levels of abstraction. A
high-level project management summary, for instance, will
reflect architectural design decisions and their effects differ-
ently than a document describing detailed technical design.

The ISO/IEC 14598-1 international standard [10] defines
a software product as ‘the set of computer programs, pro-
cedures, and possibly associated documentation and data’.
Quality is defined as ‘the totality of characteristics of an
entity that bear on its ability to satisfy stated and implied
needs’, while quality evaluation is ‘a systematic examina-
tion of the extent to which an entity is capable of fulfilling
specified requirements’. Consequently, when we refer in
this paper to a software product quality audit - i.e. an audit
in which the quality of a software product is evaluated - we
refer to ‘the systematic examination of the extent to which
a set of computer programs, procedures, and possibly as-
sociated documentation and data are capable of fulfilling
specified requirements’.

We have conducted a case study at a company that has
broad experience in performing software product audits.
This company provides independent quality audits of soft-
ware products. Its customers range from large private com-
panies to governmental institutions. In this case study we
have investigated the use of architectural knowledge in soft-
ware product audits. To this end we observed an audit that
was being conducted for one of the company’s customers.
We attended and observed the audit team meetings and had
discussions with the audit team members on their use of
architectural knowledge in the audit. In addition, we held
more general interviews on this topic with five employees
who had been involved in various audits, two of whom
were also directly involved in the observed audit. The in-
terviewed employees possess different levels of experience
and have different focal points when conducting an audit.
The problem sketched above corresponds to a problem that
is perceived by all auditors as being difficult to deal with.

©0-7695-2744-2/06/$20.00 2006 IEEE

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

In short, the auditors need a reading guide that guides them
through the documentation.

In this paper, based on the case study we performed, we
outline the problem of discovering architectural knowledge
in software product documentation and present a technique
that can be used to alleviate this problem. This technique,
Latent Semantic Analysis, uses a mathematical technique
called Singular Value Decomposition to discover the se-
mantic structure underlying a set of documents. We employ
this latent semantic structure to guide the auditors through
the documentation to the architectural knowledge needed.

The remainder of this paper is organized as follows. The
next section discusses the use of architectural knowledge in
software product audits based on our observations in the
case study we conducted. Section 3 presents Latent Se-
mantic Analysis (LSA) and its mathematical background.
Section 4 discusses the application of LSA to a set of doc-
uments that contain software product documentation and
shows how we can employ the semantic structure uncov-
ered by LSA to guide the auditor to relevant architectural
knowledge. Section 5 contains a discussion on related work
regarding the application of LSA to similar problems as
well as related work in the area of research into architec-
tural knowledge. Section 6 outlines research areas that are
still open for further study, and Section 7 contains conclud-
ing remarks on this paper.

2. Architectural Knowledge in a Software
Product Audit

In a software product audit, two types of architectural
knowledge can be distinguished. On the one hand there is
architectural knowledge pertaining to the current state of
the software product; this knowledge reflects the architec-
tural decisions taken. On the other hand there is architec-
tural knowledge pertaining to the desired state of the soft-
ware product; this knowledge reflects the architectural de-
cisions demanded (or expected). It is the auditor’s job to
compare the current state with the desired state.

In order to perform a comparison of current state and de-
sired state, the auditor has to have a firm grasp on both types
of architectural knowledge. A common method to structure
the architectural knowledge of the desired state is to define
a number of review criteria. These criteria can be phrased
as (architectural) decisions, and are a combination of the
wishes of the customer and the expertise of the auditor. An
example of such a criterion might be ‘All errors in the soft-
ware are written to a log. Each log entry contains enough
information to determine the cause of the error.’. A soft-
ware product audit consists of a comparison of these review
criteria against the current state of the software product.

The ‘current state’ architectural knowledge of the soft-
ware product is reflected in different artifacts, in particular

in source code and the accompanying documentation. Some
architectural knowledge, for instance alternative solutions
that were considered but have been rejected, might not be
explicitly captured in these artifacts at all. This architec-
tural knowledge lives tacitly in the heads of its originators.
Particular methods that are used to distill the architectural
knowledge needed from these three sources - source code,
documentation, and people - are:

• scenario analysis,

• interviews,

• source code analysis, and

• document inspection.

Both interviews and scenario analysis are techniques to
elicit architectural knowledge from people’s minds, and
consequently require extensive interaction with the software
product supplier. Source code analysis and document in-
spection, however, are performed using only the artifacts
that have been delivered as part of the software product. In
terms of availability of resources, the latter two are hence
to be preferred. In the remainder of this paper we will fo-
cus on document inspection in particular. A typical first use
of the architectural knowledge reflected in the documenta-
tion is for auditors to familiarize themselves with a software
product. Once a certain level of comprehension has been at-
tained, the documents are used as a source of evidence for
findings regarding the software product quality.

While document inspection is an important method in
a software product audit, it can also be a difficult method
to use. The difficulty of performing document inspection
lies in the sheer amount of documentation that accompanies
most software products. Auditors are swamped with doc-
umentation, and there is no single document that contains
all architectural knowledge needed. Moreover, a ‘reading
guide’, which tells the auditors which information can be
found where, is usually not available up front. Auditors
need to fall back on interviews, a resource-intensive tech-
nique, to gain an initial impression of the organization of
architectural knowledge in the documentation.

In general, from the interviews held we learned that audi-
tors have three major questions regarding software product
documentation and the architectural knowledge contained
in it. These three questions are:

1. Where should I start reading?

2. Which documents should I consult for more informa-
tion on a particular architectural topic?

3. How should I progress reading? In other words, what
is a useful ’route’ through the documentation to gain a
sufficient level of architectural knowledge?

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

From the above it should be clear that the auditors who
perform a software product audit would greatly benefit from
tools and techniques that can direct them to relevant archi-
tectural knowledge. We refer to the goal of such tools and
techniques as ‘Architectural Knowledge Discovery’ [3]. A
core capability of Architectural Knowledge Discovery is the
ability to grasp the semantic structure, or meaning, of the
software product documentation. Employing this structure
transforms the set of individual texts into a collection that
contains architectural knowledge elements and the intrinsic
relations between them. A technique that can be deployed
to support the discovery of directions to relevant architec-
tural knowledge is Latent Semantic Analysis.

3. Latent Semantic Analysis

A method that can be used to capture the meaning of
a collection of documents is the construction of a vector-
space model. Vector-space models are based on the as-
sumption that the meaning of a document can be derived
from the terms that are used in that document. In a vector-
space model, a document d is represented as a vector of
terms d = (t1, t2, ..., tn), with ti (i = 1, 2, ..., n) being the
number of occurrences of term i in document d [16].

Figure 1 depicts a matrix based on the vector-space
model constructed for three texts that were taken from
the documentation of a software product. The three texts
used are representative selections from a use case defini-
tion (UC), a service specification (SVC), and an architecture
description (ARCH). Together, the three document vectors
corresponding to these three texts contain approximately 90
distinct terms. This so-called term-document frequency ma-
trix represents the number of occurrences of each of these
terms in each of the three documents. The original docu-
ment vectors are hence extended with terms that did not oc-
cur in the document itself, but do occur in one of the other
texts. In these extended document vectors ti is set to 0 if
term i does not occur in the document. The cutout shows
the exact number of occurrences of six terms in the respec-
tive texts. For reasons of non-disclosure, the terms ‘domain
entity’, ‘use case’, and ‘business object’ have been substi-
tuted for the product-specific terminology.

Although the vector-space model in Fig. 1 captures some
of the semantics of the three texts, parts of the underlying
semantic relationships are not represented very well. Based
on Fig. 1 we can for instance only conclude that in theory
neither the use case definition nor the service specification
has anything to do with the term ‘SOA’ (an abbreviation
for ‘Service Oriented Architecture’). In practice, however,
we would expect at least some relevance of the term ‘SOA’
in the context of a service specification. Latent Semantic
Analysis allows us to exploit these underlying, or latent, se-
mantic relationships.

Figure 1. Term-document frequency matrix
based on the vector-space model for three
software product documentation excerpts.

Latent Semantic Analysis (LSA) relies on a mathemati-
cal technique called Singular Value Decomposition (SVD).
SVD decomposes a rectangular m-by-n matrix A in the
product of three other matrices: A = UΣV T . The ma-
trix Σ is a r-by-r diagonal matrix, in which the diagonal
entries (σ1, σ2, ..., σr) are singular values and r is the rank
of A. As explained in [6], SVD is closely related to standard
eigenvalue-eigenvector decomposition of a square symmet-
ric matrix. In fact, U is the matrix of eigenvectors of the
square symmetric matrix AAT , while V is the matrix of
eigenvectors of AT A. Σ2 is the matrix of eigenvalues for
both AAT and AT A. The interested reader can find more
technical details on SVD in advanced linear algebra litera-
ture such as [7].

Since SVD can be applied to any rectangular matrix, it
can also be used to decompose a term-document frequency
matrix such as the one depicted in Fig. 1. The matrices
U and V then contain vectors that specify the locations of
the terms and documents in a term-document space, respec-
tively. The r orthogonal dimensions in this space can be in-
terpreted as representations of r abstract concepts (cf. [15]).
The left-singular and right-singular vectors ui and vj indi-
cate how much of each of these abstract concepts is present
in term i and document j.

As outlined above, the original matrix A can be recon-
structed by calculating the product of UΣV T . Instead of a
reconstruction, a rank-k approximation of A can be calcu-
lated by setting all but the highest k singular values in Σ
to 0. This approximation, Ak, is the closest rank-k approxi-
mation to A [1]. Calculating Ak for a term-document space,

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

such as the one depicted in Fig. 1, results in the closest k-
dimensional approximation to the original term-document
space [16]. In other words, by using SVD it is possible to
reduce the number of dimensions in a term-document space.
It is exactly this capability of SVD that is employed by LSA.

By using only k dimensions to reconstruct a term-
document space, LSA no longer recalculates the exact num-
ber of occurrences of terms in documents. Instead, LSA es-
timates the number of occurrences based on the dimensions
that have been retained. The result is that terms that origi-
nally did not appear in a document might now be estimated
to do appear, and that other words that did appear in a doc-
ument might now have a lower estimated frequency [15].
This is the way in which LSA infers the latent semantic
structure underlying the term-document space, and the way
in which the deficiencies in the semantics captured in a
vector-space model are overcome.

In the reduced dimensional reconstruction of the term-
document space, the meaning of individual words is in-
ferred from the context in which they occur. This means
that LSA largely avoids problems of synonymy, for instance
introduced because two different authors of documentation
for the same software product use two different terms to
denote the same concept. One of the authors might for
instance use the full product name in the documentation,
while the other author prefers to use an acronym. Since the
contexts in which these different terms are used will often
be similar, LSA will expect the product acronym to occur
with relatively high frequency in texts where the full prod-
uct name is used and vice versa. However, it should proba-
bly be stressed here that we cannot expect LSA to improve
the documentation in any other way than making it more
accessible. LSA will happily accept wrong, superfluous,
or obsolesced documentation and guide anyone interested
to ‘relevant’ parts of that documentation. Nonetheless, for
reasonably well-written documentation the latent semantic
structure LSA infers can be very well exploited to guide the
reader.

Figure 2 shows the result of the application of LSA to the
term-document frequency matrix from Fig. 1. The cutout
shows the same six terms that are shown in the cutout in
Fig. 1, but this time the numbers correspond to the esti-
mated term frequencies based on retaining only 2 dimen-
sions. Upon inspection of this result, interesting patterns
appear. For starters, the term SOA is now expected to be
present in the service specification as well, albeit at a lower
frequency than in the architecture description. This corre-
sponds to our intuitive notion that we would expect at least
some relevance of SOA to a service specification. The neg-
ative expected frequency of SOA in the use case specifica-
tion is somewhat awkward to interpret mathematically, but
might perhaps best be regarded as a kind of ‘surprise fac-
tor’. In a sense, LSA tells us that it does not merely not

Figure 2. Estimated term-document frequen-
cies after the application of LSA to the matrix
in Fig. 1.

expect the term SOA to crop up in the use case specifica-
tion (estimated number of occurrences = 0); it would even
be quite surprised to encounter this term there.

In general, a pattern seems to emerge in Fig. 2. If we re-
gard the use case specification as the lowest level of abstrac-
tion text, the architecture description as the highest level,
and the service definition somewhere in between, we see
that low-level concepts (such as ‘business object’ and ‘use
case’) have a diminishing level of association as the level of
abstraction of the text increases and vice versa. This pattern
stems from the semantic structure in the documents. We
can employ the uncovered semantic structure to guide an
auditor to the information needed.

4. Constructing a Reading Guide: A Case
Study

The LSA technique introduced in Section 3 forms the
basis of a detailed case study in which we examine how the
semantic structure discovered by LSA can be employed to
guide the auditors through the documentation. This section
presents the results of this case study.

Figure 3 depicts the interactive process by which an au-
ditor is guided through the documentation. Initially, audi-
tors start with a set of unread documents. Although the
content of these documents is still unknown, the auditors
have a goal that needs to be satisfied by reading (part of)
the documentation. Examples of such goals are obtaining a
global understanding of the software product, investigating
certain quality attributes, or locating (further) evidence for

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

Auditor

Reduced-dimensional
term/document space

Software product documentation

Latent
Semantic Analysis

read documents

new information

term
to explore

suggested
documents

Figure 3. Schematic overview of the con-
struction of a reading guide using the
reduced-dimensional term-document space
calculated by LSA.

certain findings. The reduced-dimensional term-document
space, which results from LSA, can be inspected to locate
documents that are highly associated with a term that corre-
sponds to the auditor’s goal. For instance - and this example
will be worked out in more detail below - the term ‘archi-
tecture’ could be used to find documents that provide high-
level information about the software product. From read-
ing the suggested documents, an auditor learns new infor-
mation including new - potentially product-specific - terms
that can be used to locate documents that provide more de-
tail on the new terms. In short, reading guidance consists
of an iterative process of selecting and reading documenta-
tion, in which the auditor can use the architectural knowl-
edge gained from reading suggested documents to steer the
selection of new documents.

We applied LSA to a total of 80 documents that were
subject to the audit that has been described earlier. The
term-document frequency matrix that was constructed for
these documents contained a total of 3290 terms found in
the 80 documents. These 3290 terms did not contain very
common words (‘stopwords’) such as ‘a’, ‘the’, or ‘is’. It is
common practice to disregard these stopwords, since they
tend to be evenly spread over all documents and hence do
not bear any distinctive meaning. The length of the doc-
ument vectors that make up the term-document frequency
matrix had been normalized before LSA was applied. This
normalization reduces the effect of document size (i.e. the
number of terms in the document); without normalization,
longer documents tend to be favored over shorter documents
when a document selection is made.

Using the technique described in Section 2, we cal-
culated a 5-dimensional approximation of the constructed

term-document frequency matrix. The selection of the num-
ber of dimensions to retain is an empirical issue [15], al-
though some heuristics exist [2]. The rank-5 approximation
chosen here requires a 49% change relative to the original
term-document frequency matrix. Although this might ap-
pear as a rather large change, the results obtained with this
approximation suit our needs; they can be effectively used
to construct a reading guide.

The case study presented here reconstructs the early
phase of the software product audit, in which the auditors
need to attain a global understanding of the software prod-
uct in order to further assess its quality. As in the previous
section, for reasons of non-disclosure the results presented
here have been anonymized.

In general, when auditors commence a software product
audit they want to gain an initial, high-level understanding
of the software product. This global understanding is neces-
sary to successfully perform the audit, since it is a prerequi-
site for subsequent audit activities. For instance, in scenario
analyses the supplier of the software product is asked how
the product reacts to certain change scenarios or failure sce-
narios. In order to judge the answer the supplier provides,
an auditor needs to have a thorough understanding of the
software product. Otherwise, the supplier might provide an
answer that is incomplete or inconsistent with the real state
of the product, without this being noticed.

Auditors who want to attain overall comprehension of
the software product can be guided through the documen-
tation using the semantic structure discovered by LSA. A
route that is preferred by all auditors we interviewed is to
start with high-level, global information and gradually de-
scend to texts that contain more detailed and fine-grained
information. A single term that can be expected to cover
the high-level information about the software product well
is the term ‘architecture’.

We can inspect the reduced 5-dimensional approxima-
tion of the original term-document frequency matrix that
LSA has calculated to find the documents that best match
the term ‘architecture’. In order to do so, it suffices to rank
the documents by their respective values in the row that co-
incides with the term ‘architecture’ (the ‘architecture’ term
vector). Documents that have a high value in the ‘archi-
tecture’ term vector correspond to the documents in which
LSA expects the highest number of occurrences of the term
‘architecture’. Recall that the highest-ranking documents
do not necessarily include the literal term ‘architecture’, but
that LSA inferred that it would be likely to encounter the
term ‘architecture’ in these documents; they are semanti-
cally close to the meaning of ‘architecture’. In other words,
these documents talk about architecture, perhaps without
mentioning the word ‘architecture’ itself.

The list in Table 1 shows the 10 highest ranked docu-
ments for the term ‘architecture’, together with the actual

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

Table 1. Top-10 documents that match the
term ‘architecture’, with the number of occur-
rences of ‘architecture’ in the document.

Rank Document ID # ‘architecture’
1 79 44
2 39 1
3 44 3
4 41 2
5 78 10
6 46 0
7 45 1
8 42 1
9 40 2
10 49 0

number of occurrences of ‘architecture’ in these documents.
Given this list, an auditor can simply start reading top-down,
in this case starting with document 79. However, some
of these documents are fairly large while others are rather
small. In fact, documents 46 and 45 both consist of only
2 pages. If an understanding of the software product can
be attained by either reading a (very) small document or by
ploughing through a large number of pages, the former is
obviously preferred by the auditors. Table 2 lists the same
top-10 documents for ‘architecture’ also shown in Table 1.
In this table, however, the documents have been catego-
rized according to their size. The size categories have been
defined as: very small (< 5 pages), small (< 10 pages),
medium (< 30 pages) and large (≥ 30 pages). The rank ac-
cording to Table 1 is given in between brackets, to illustrate
the differences.

Table 2. Top-10 documents that match the
term ‘architecture’, grouped by size.

Rank Doc. ID # pages

Very small
1 (6) 46 2
2 (7) 45 2

Small
3 (5) 78 6
4 (10) 49 9

Medium
5 (1) 79 24
6 (2) 39 13
7 (3) 44 21

Large
8 (4) 41 30
9 (8) 42 48

10 (9) 40 31

Table 2 shows that, given a preference for smaller doc-
uments, an auditor looking for information about the ar-
chitecture of the software product should first read docu-

ment 46. Note that this document does not contain the term
‘architecture’ at all (see Table 1). Nevertheless, upon in-
spection this document indeed contains high-level ‘archi-
tectural’ information.

From document 46, the auditor learns that the software
product consists of three high-level components, which we
will call X, Y, and Z. Furthermore, the document identifies
two external systems that interact with the software prod-
uct as well as an organizational unit that will handle certain
types of operational problems that might occur. Finally, the
document contains a list of intended uses of the software
product.

Now that the auditor knows a little more about the soft-
ware product, the next document has to be selected. Since
the auditor still has not read all ‘architecture’ documents,
there are in principle two options: either remain with the
‘architecture’ documents and select a document from that
list (e.g. document 45) or use the architectural knowledge
obtained to delve into a particular topic.

Good candidates for further exploration of the documen-
tation are the components X, Y, and Z. Since these com-
ponents conceptually divide the software product in three
distinct parts, auditors might want to examine each of these
parts to further their global understanding.

In its current form, the selection of the right terms for
exploration is a matter of experience. It is from experience
that the auditor knows that the term ‘architecture’ is likely
to be related to high-level software product documentation.
It is from experience that the auditor suspects that the three
components are good candidates for further exploration.

In order to assess the deviation of each of the compo-
nents from the meaning of the term ‘architecture’ a cal-
culation can be performed of the similarity between the
terms ‘architecture’ and ‘componentX’, ‘componentY’, and
‘componentZ’ respectively. This enables us to identify how
much the texts for which LSA infers a high association with
each of the components deviate from the text in document
46, which closely resembled the meaning of the term ‘archi-
tecture’. Given the fact that the auditors want to gradually
progress through the documentation, the degree of deviation
is an indication of the route that should be followed through
the documents.

A common measure of similarity between terms (or
‘term-term similarity’) is the cosine of the angle between
the two term vectors [2]. Let ti and tj be the term vectors
for terms ‘i’ and ‘j’ respectively, i.e. the rows from Ak that
correspond to the terms ‘i’ and ‘j’. Then the cosine of the
angle θ between these term vectors is cos θ = ti·tj

||ti||||tj || .
Table 3 shows the similarity of each of the terms ‘com-

ponentX’, ‘componentY’, and ‘componentZ’ with the term
‘architecture’, calculated as the cosine between their respec-
tive term vectors. It becomes clear from these three values
that ‘componentX’ is semantically closest to ‘architecture’

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

followed by ‘componentZ’, and that ‘componentY’ is the
least similar to ‘architecture’.

An interesting observation is that the relations between
the three components are not readily apparent from the text
in the document itself, nor from the names given to the com-
ponents. Although the document does contain a picture that
seems to suggest a layered ordering of the components, the
text in document 46 does not mention or reflect such a lay-
ered approach at all. Here, by using LSA we have truly
discovered architectural knowledge that the auditor could
not have distilled from reading document 46 alone. This
discovered knowledge can be used to further explore the
documentation.

Based on the similarity of ‘architecture’ and each of
the three components, a logical next step to read the doc-
umentation seems to first read the top-ranking documents
for ‘componentX’, then for ‘componentZ’, and finally for
‘componentY’. By following this route, the semantical dis-
tance between the document just read and the newly se-
lected documents increases gradually.

Table 3. Cosine term-term similarity of ‘archi-
tecture’ and the high-level components

componentX componentY componentZ
0.9814 0.4096 0.7900

Analogous to the selection of the top-10 documents for
the term ‘architecture’, we selected the top-10 documents
for each of the terms ‘componentX’, ‘componentY’, and
‘componentZ’. For each of the components, we analyzed
the top-10 documents found. The results of this analysis
show an interesting pattern in the selection of documents.

Due to its close semantical resemblance of ‘architec-
ture’, shown in Table 3, the top-10 documents that were
found for the term ‘componentX’ are in fact the same 10
documents that were found for ‘architecture’. The only dif-
ference is a small change in the ranking of the documents.
The top-10 documents found for the term ‘componentZ’
(the next closest term to ‘architecture’) comprises a mix of
service specifications and architectural design descriptions,
with a clear focus on service specifications (the first four
documents in the list are service specifications). The top-10
documents found for ‘componentY’ are all use case defini-
tions.

The route through the documentation found by analyz-
ing the result of LSA suggests that, using ‘architecture’ as
a starting point, the auditors should first read the architec-
ture descriptions and similar high-level documentation, then
proceed with service specifications, and finally read the use
case definitions. Although LSA does not in and of itself
know of the distinction between high-level documents (i.e.
architecture descriptions) and low-level documents (i.e. use

case definitions), the documents that it suggests to read are
grouped along this axis. Moreover, from interviews with the
auditors we learned that this is indeed a route they prefer to
follow to familiarize themselves with a software product.
This proves the value of the use of LSA as an architectural
knowledge discovery technique to construct a reading guide
for a software product audit.

5. Related Work

The application of Latent Semantic Analysis to archi-
tectural knowledge discovery discussed in this paper bears
some relation to other work, both within and outside of the
Software Engineering research domain. The origin of LSA
lies in information retrieval. LSA was presented in 1990 by
Deerwester et al. as ‘a new method for automatic indexing
and retrieval’ of documents [6]. Later research also focused
on the psycholinguistic significance of LSA. Landauer and
Dumais, for instance, use LSA to simulate the acquisition
of vocabulary from text, and present LSA as a theory of ac-
quisition, induction, and representation of knowledge [14].

Over the years, LSA has seen various application do-
mains, including Software Engineering. For instance,
Maletic et al. applied LSA to source code of software com-
ponents in order to support program comprehension [17,
18]. Another approach is taken by Hayes et al., who use
LSA to support the construction of requirements traceabil-
ity matrices [8].

Our approach adds a new item to the list of LSA applica-
tions in Software Engineering. Although construction of a
reading guide for software product documentation also con-
tributes to better program understanding, our approach dif-
fers from the use of LSA by Maletic et al., who apply LSA
to source code artifacts. The effect of a reading guide is
also not limited to better product comprehension, but further
supports the auditors in locating evidence for their findings.
Since architectural knowledge can be reflected differently in
source code and documentation, some of the evidence and
knowledge that can be found in the documentation might
not be available from the software product’s source code.

6. Future Work

The work presented in this paper gives rise to a number
of issues that warrant further research. An overall issue that
remains to be investigated is the scalability of our approach.
LSA proved to be feasible for a corpus of 80 documents, but
in practice software product documentation might comprise
many more documents. Document sets of several hundreds
of documents are not uncommon. Also, our current use of
LSA concerns a final set of documents. We may also en-
vision using LSA in a forward-engineering sense, to judge

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

the quality of the evolving (architectural or otherwise) doc-
umentation of a system, and giving guidelines as to where
the documentation needs attention.

Besides these global issues, we have identified four main
areas that are to be further explored in the present con-
text: enhancement of the workflow, the use of background
knowledge, quantitative evaluation, and user interaction.
This section describes each of these areas in more detail.

6.1. Workflow Enhancement

The ‘workflow’ presented in this paper, i.e. the selec-
tion of terms to explore the documentation, is still rather ad
hoc and depends heavily on the auditor’s experience. One
could wonder whether the same result would have been ob-
tained had the process been started with another ‘high-level’
term, such as the name of the software product instead of the
generic term ‘architecture’.

As a matter of fact, using the name of the product, or
the high-level term ‘system’ instead of ‘architecture’, would
have yielded a different result. The documents that are sug-
gested for these terms resemble the documents that were
suggested for ‘componentZ’, i.e. with an emphasis on ser-
vice specifications. Document 46 would not have been sug-
gested for any of these terms. Depending on one’s opinion
this may or may not come as a surprise. Some might argue
that ‘system’ indeed carries more of a notion of implemen-
tation than ‘architecture’. It does show, however, the im-
portance of the selection of the (initial) terms to explore. It
also shows that the auditor would benefit from assistance in
this selection instead of having to rely on experience alone.
We would like to capture this kind of experience to enhance
the workflow and aid the auditor in selecting new terms to
explore.

We believe that we can capture relevant experience and
enhance the workflow by introducing a feedback loop. By
keeping track of terms that worked well in earlier projects,
the auditor can be presented with suggestions as to which
terms to explore in a new project. This helps the auditor to
get the project started (e.g. by suggesting initial terms such
as ‘architecture’), but can also circumvent potential dead-
ends in the exploration by explicitly ignoring terms that are
known to have led to dead-ends in previous audits. Such
suggestions could perhaps also be mined from the docu-
mentation itself, using techniques such as frequency pro-
filing to locate uncommon words (with respect to a stan-
dard corpus) that are likely to be part of a domain-specific
vocabulary. Sawyer et al. report successful application of
frequency profiling in extraction of domain terms from re-
quirements engineering documents [19].

While a feedback loop could relatively easily handle
common generic terms such as ‘architecture’, additional re-
search is needed in particular to determine how to cope

with product-specific terminology such as ‘componentX’.
The reasons that auditors choose certain (product-specific)
terms for further exploration need to be analyzed and trans-
lated to more generic ‘heuristics’ and best practices that are
applicable to other projects as well. An example heuris-
tic might be that, given the auditor’s goal of overall prod-
uct comprehension, terms that signify components are bet-
ter candidates for further exploration than terms that signify
intended uses. This heuristic can change when the auditor’s
goal changes. If the auditor is looking for the satisfaction of
certain requirements, intended uses might be preferred over
components.

6.2. Background Knowledge Incorporation

The ‘queries’ that are used in this paper to explore the
software product documentation are logical from an audi-
tor’s point of view. The auditor starts with a high-level ex-
ploration of the software product’s architecture, gradually
zooming in to reveal more detailed architectural knowledge.
Through Latent Semantic Analysis, documents with dimin-
ishing levels of abstraction are identified: from architecture
descriptions at the highest level through service definitions
to use case specifications at the lowest level. However, this
analysis sequence still requires extensive human interpre-
tation. As remarked earlier, LSA itself has no notion of
‘high-level’ or ‘low-level’ documentation, nor of any other
domain-specific knowledge.

To further enhance the support for auditors reading the
software product documentation we intend to investigate the
incorporation of relatively static background knowledge in
the automated analysis of the documentation. The words
‘relatively static’ signify domain knowledge that does not
change for each audit. Apart from often used classifications
such as high-level vs. low-level documentation, examples
of such background knowledge are:

• generic models, such as quality models (e.g. [11]) and
process models (e.g. [9]);

• ontologies, for instance of architectural patterns
(e.g. [4]) and their known relations with for example
quality attributes;

• ‘heuristics’, such as an auditor’s general preference for
smaller documents (see also Section 4).

Background knowledge can be incorporated in construc-
tion of a reading guide by using it in the selection of sug-
gested documents to read. Models and ontologies can for
instance be used to broaden the scope when exploring a cer-
tain term; they can be used to formulate rules of the form
‘if auditors are interested in X (e.g. ‘maintainability’) they
are (probably) also interested in Y (e.g. ‘changeability’, see
also [11])’. Heuristics can for example be applied to change

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

the suggested order in which the documents should be read,
as demonstrated in Section 4.

Note that there is also some overlap of background
knowledge incorporation with the planned workflow en-
hancements described in Section 6.1. The heuristics (or best
practices) described in that section can in fact be regarded as
background knowledge. The translation of product-specific
terminology to generic terms used in these heuristics could
very well be based on an ontology structure.

Background knowledge can hence be employed at two
levels: to suggest terms to explore, steering the workflow;
and to suggest documents to read, steering the analysis.
Both affect the outcome of the process, the reading guide.

6.3. Quantitative Evaluation

This paper shows that the application of LSA to the con-
struction of a reading guide for software product audits de-
livers results that support the auditors in finding a route
through the documentation. However, we do not have a
quantitative measure of ‘goodness’ of the reading guide.

We intend to further research the quantitative evaluation
of architectural knowledge discovery, and in particular eval-
uation and validation of the application of LSA discussed in
this paper. We are currently already investigating the use of
the so-called repertory grid technique to elicit the mental
model an auditor constructs and/or uses in a software prod-
uct audit. A mathematical comparison of the distances be-
tween documents and/or concepts as they are perceived by
the auditors with the distances that are calculated by LSA
then leads to a quantitative measure of ‘goodness’. Prelim-
inary experience with this technique leads us to believe that
the repertory grid technique can be used to validate the re-
sult of architectural knowledge discovery.

Having defined a quantitative evaluation measure, we
can closely monitor whether adjustment of our method im-
proves the result. We could, for instance, assess the ef-
fect of the incorporation of background knowledge in the
analysis of the documentation. Such an assessment con-
sists of a comparison of the distances perceived by the
auditors with the distances before and after incorporating
background knowledge. If the result of the analysis cor-
responds more to the auditor’s mental model when back-
ground knowledge is taken into account, this means that us-
ing this background knowledge is indeed an improvement.
A quantified comparison of the auditor’s mental model with
the result of LSA could also provide guidance to selection
of the right number of reduced dimensions, since the op-
timal number of dimensions yields the best match of the
LSA result with the auditor’s perception. Finally, the ef-
fect of using other techniques instead of, or together with,
LSA could be easily judged analogous to the assessment
of the incorporation of background knowledge. Techniques

that could further improve architectural knowledge discov-
ery results include techniques that, complementary to LSA,
exploit certain more structured properties of the documen-
tation. If, for example, a set of documents is structured ac-
cording to a particular template – which is not uncommon
– knowledge of this template could be used to guide the
reader to particular parts of the documentation.

6.4. User Interaction and Tool Support

A final area in which further research is needed is the
area of user interaction. The results presented in this paper
all show direct operations on the reduced-rank approxima-
tion of the original term-document frequency matrix. This
matrix is arguably not the best form of presentation for the
end users, i.e. the auditors.

In order to be useful and used in an auditor’s everyday
practice, the techniques discussed in this paper should be
implemented in an interactive environment that abstracts
away from the underlying estimated term frequencies. This
environment should provide intuitive support for the work-
flow discussed in Section 6.1.

A particular area that requires further research is visu-
alization of the reduced-dimensional term-document space.
A desirable visualization supports both locating terms to ex-
plore and locating documents to read. Ideally, this would
be presented to the auditors as a space through which they
could navigate in search of the architectural knowledge they
need. In this space, distances between terms and/or docu-
ments have actual meaning (cf. the three terms in Table 3).
Such a visualization requires a projection of the reduced-
dimensional term-document space to two - or at most three
- dimensions. Through such a visualization, auditors can
obtain quick visual clues as to which documents are closely
related and how to proceed reading the document set.

7. Conclusion

Document inspection is a method used in software prod-
uct audits to distill architectural knowledge from the soft-
ware product documentation. Unfortunately, document in-
spection is often hard to perform. Auditors are in need of a
reading guide that tells them where to start reading, how to
progress reading, and which documents to consult for more
detail on a particular topic.

We have demonstrated how auditors can be guided
through the documentation with a case study in which we
reconstructed the early phase of a software product. In this
phase, the auditor has not read any documents yet and needs
to attain a certain level of understanding of the software
product.

To construct a reading guide, we have employed the se-
mantic structure discovered by Latent Semantic Analysis.

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

This semantic structure is used as the basis for an interactive
process in which auditors indicate terms that they want to
explore and are subsequently given reading suggestions for
documents containing information about these terms. The
knowledge obtained from the suggested documents can give
rise to new terms to explore, and the discovered semantic
structure can be used to determine the order in which the
terms - and corresponding documents - should be explored.

We have identified four areas of future work: workflow
enhancement, use of background knowledge, quantitative
evaluation, and user interaction. We intend to direct re-
search efforts toward each of these areas in order to further
improve the work presented in this paper.

Acknowledgement

This research has been partially sponsored by the Dutch
Joint Academic and Commercial Quality Research & De-
velopment (Jacquard) program on Software Engineering
Research via contract 638.001.406 GRIFFIN: a GRId For
inFormatIoN about architectural knowledge. We would like
to thank the anonymous reviewers for their insightful com-
ments.

References

[1] M. Berry, S. Dumais, and G. O’Brien. Using linear algebra
for intelligent information retrieval. Technical Report CS-
94-270, December 1994.

[2] M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices, vector
spaces, and information retrieval. SIAM Review, 41(2):335–
362, 1999.

[3] R. C. d. Boer. Architectural knowledge discovery: Why and
how? In Workshop on SHAring and Reusing architectural
Knowledge (SHARK), Torino, Italy, 2006.

[4] G. Booch. Handbook of software architecture,
http://www.booch.com/architecture/.

[5] J. Bosch. Software architecture: The next step. In
F. Oquendo, B. Warboys, and R. Morrison, editors, Soft-
ware Architecture: First European Workshop (EWSA), vol-
ume 3047 of Lecture Notes in Computer Science, pages 194–
199, St. Andrews, UK, 2004. Springer-Verlag GmbH.

[6] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman. Indexing by latent semantic analysis.
Journal of the American Society for Information Science
(JASIS), 41(6):391–407, 1990.

[7] G. H. Golub and C. F. V. Loan. Matrix Computations. The
Johns Hopkins University Press, third edition, 1996.

[8] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram. Improv-
ing after-the-fact tracing and mapping: Supporting software
quality predictions. IEEE Software, 22(6):30–37, 2005.

[9] ISO/IEC. Information technology - software product eval-
uation - part 5: Process for evaluators. Technical Report
ISO/IEC 14598-5, 1998.

[10] ISO/IEC. Information technology - software product evalu-
ation - part 1: General overview. Technical Report ISO/IEC
14598-1, 1999.

[11] ISO/IEC. Software engineering - product quality - part 1:
Quality model. Technical Report ISO/IEC 9126-1, 2001.

[12] A. Jansen and J. Bosch. Software architecture as a set of
architectural design decisions. In 5th IEEE/IFIP Working
Conference on Software Architecture (WICSA), Pittsburgh,
Pennsylvania, USA, 2005.

[13] P. Kruchten, P. Lago, and H. v. Vliet. Building up and
reasoning about architectural knowledge. In 2nd Interna-
tional Conference on the Quality of Software Architectures
(QoSA), 2006.

[14] T. K. Landauer and S. T. Dumais. A solution to plato’s
problem: The latent semantic analysis theory of acquisition,
induction, and representation of knowledge. Psychological
Review, 104(2):211–240, 1997.

[15] T. K. Landauer, P. W. Foltz, and D. Laham. An introduction
to latent semantic analysis. Discourse Processes, 25:259–
284, 1998.

[16] T. A. Letsche and M. W. Berry. Large-scale information re-
trieval with latent semantic indexing. Information Sciences,
100(1-4):105–137, 1997.

[17] J. I. Maletic and A. Marcus. Using latent semantic analysis
to identify similarities in source code to support program
understanding. In 12th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI), 2000.

[18] J. I. Maletic and N. Valluri. Automatic software clustering
via latent semantic analysis. In 14th IEEE international con-
ference on Automated Software Engineering (ASE), 1999.

[19] P. Sawyer, P. Rayson, and K. Cosh. Shallow knowledge as
an aid to deep understanding in early phase requirements
engineering. IEEE Transactions on Software Engineering,
31(11), 2005.

[20] J. S. v. d. Ven, A. G. J. Jansen, J. A. G. Nijhuis, and J. Bosch.
Design decisions: The bridge between rationale and archi-
tecture. In A. H. Dutoit, R. McCall, I. Mistrik, and B. Paech,
editors, Rationale Management in Software Engineering.
Springer-Verlag, 2006.

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

