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Abstract

Architectural knowledge is reflected in various artifacts of a software product. In a
software product audit this architectural knowledge needs to be uncovered and its
effects assessed in order to evaluate the quality of the software product. A partic-
ular problem is to find and comprehend the architectural knowledge that resides
in the software product documentation. In this article, we discuss how the use of
a technique called Latent Semantic Analysis can guide auditors through the docu-
mentation to the architectural knowledge they need. We validate the use of Latent
Semantic Analysis for discovering architectural knowledge by comparing the re-
sulting vector-space model with the mental model of documentation that auditors
possess.

Key words: Software architecture, architectural knowledge, knowledge discovery,
latent semantic analysis, software product audit.

1 Introduction

The architectural design of a software product and the architectural design
decisions taken play a key role in software product audits. Architectural design
decisions and their rationale provide, for instance, insight into the trade-offs
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that were considered, the forces that influenced the decisions, and the con-
straints that were in place. The architectural design that is the result of these
decisions allows for comprehension of such matters as the structure of the
software product, its interactions with external systems, and the enterprise
environment in which the software product is to be deployed. Following a re-
cent trend in software architecture research (e.g., (Bosch, 2004; Jansen and
Bosch, 2005; Kruchten et al., 2006; van der Ven et al., 2006)) we refer to
the collection of architectural design decisions and the resulting architectural
design as ‘architectural knowledge’.

For a given software product there is no single source that contains or pro-
vides all relevant architectural knowledge. Instead, architectural knowledge is
reflected in various artifacts such as source code, data models, and documenta-
tion. A complicating factor in distilling relevant architectural knowledge from
software product documentation is the fact that there are often many different
documents. Each of these documents is tailored to specific stakeholders and
different documents can therefore reflect architectural knowledge at different
levels of abstraction. A high-level project management summary, for instance,
will reflect architectural design decisions and their effects differently than a
document describing detailed technical design.

The ISO/IEC 14598-1 international standard (ISO/IEC, 1999) defines a soft-
ware product as ‘the set of computer programs, procedures, and possibly as-
sociated documentation and data’. Quality is defined as ‘the totality of char-
acteristics of an entity that bear on its ability to satisfy stated and implied
needs’, while quality evaluation is ‘a systematic examination of the extent to
which an entity is capable of fulfilling specified requirements’. Consequently,
when we refer in this article to a software product quality audit - i.e., an au-
dit in which the quality of a software product is evaluated - we refer to ‘the
systematic examination of the extent to which a set of computer programs,
procedures, and possibly associated documentation and data are capable of
fulfilling specified requirements’.

We have conducted a study at a company that has broad experience in per-
forming software product audits. This company conducts independent quality
audits of software products. Its customers range from large private companies
to governmental institutions. In this study we have investigated the use of
architectural knowledge in software product audits. To this end we observed
an audit that was being conducted for one of the company’s customers. We
attended and observed the audit team meetings and had discussions with the
audit team members on their use of architectural knowledge in the audit.
In addition, we held more general interviews on this topic with five employ-
ees who had been involved in various audits, two of whom were also directly
involved in the observed audit. The interviewed employees possess different
levels of experience and have different focal points when conducting an audit.
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The problem of finding relevant architectural knowledge sketched above corre-
sponds to a problem that is perceived by all auditors as being difficult to deal
with. In short, the auditors need a reading guide that guides them through
the documentation.

In this article we outline the problem of discovering architectural knowledge
in software product documentation and present a technique that can be used
to alleviate this problem. This technique, Latent Semantic Analysis, uses a
mathematical technique called Singular Value Decomposition to discover the
semantic structure underlying a set of documents. We employ this latent se-
mantic structure to guide the auditors through the documentation to the ar-
chitectural knowledge needed. A comparison of the discovered semantic struc-
ture with the ideas auditors have of software product documentation shows
that Latent Semantic Analysis produces a good approximation of the auditors’
mental models.

The remainder of this article is organized as follows. The next section dis-
cusses the use of architectural knowledge in software product audits based
on our observations in the case study we conducted. Section 3 presents La-
tent Semantic Analysis (LSA) and its mathematical background. Section 4
discusses the application of LSA to a set of documents that contain software
product documentation and shows how we can employ the semantic structure
uncovered by LSA to guide the auditor to relevant architectural knowledge.
In Section 5 we validate the LSA results through a comparison with auditors’
mental models of software product documentation. Section 6 contains a dis-
cussion on related work regarding the application of LSA to similar problems
as well as related work in the area of research into architectural knowledge.
Section 7 outlines research areas that are still open for further study. In Sec-
tion 8 we sketch the use of Architectural Knowledge Discovery in a broader
scope, and Section 9 contains concluding remarks on this article.

2 Architectural Knowledge in a Software Product Audit

In a software product audit, two types of architectural knowledge can be dis-
tinguished. On the one hand there is architectural knowledge pertaining to
the current state of the software product; this knowledge reflects the archi-
tectural decisions made. On the other hand there is architectural knowledge
pertaining to the desired state of the software product; this knowledge reflects
the architectural decisions demanded (or expected). It is the auditor’s job to
compare the current state with the desired state.

In order to perform a comparison of current state and desired state, the au-
ditor has to have a firm grasp on both types of architectural knowledge. A
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common method to structure the architectural knowledge of the desired state
is to define a number of review criteria. These criteria can be phrased as (ar-
chitectural) decisions, and are a combination of the wishes of the customer
and the expertise of the auditor. An example of such a criterion might be ‘All
errors in the software are written to a log. Each log entry contains enough
information to determine the cause of the error.’. A software product audit
consists of a comparison of these review criteria against the current state of
the software product.

The ‘current state’ architectural knowledge of the software product is reflected
in different artifacts, in particular in source code and the accompanying doc-
umentation. Some architectural knowledge, for instance alternative solutions
that were considered but have been rejected, might not be explicitly captured
in these artifacts at all. This architectural knowledge is left implicit and lives
only in the heads of its originators. Particular methods that are used to distill
the architectural knowledge needed from these three sources - source code,
documentation, and people - are:

• scenario analysis,
• interviews,
• source code analysis, and
• document inspection.

Both interviews and scenario analysis are techniques to elicit implicit archi-
tectural knowledge from people’s minds, and consequently require extensive
interaction with the software product supplier. Source code analysis and doc-
ument inspection, however, are performed using only the artifacts that have
been delivered as part of the software product. In terms of availability of re-
sources, the latter two are hence to be preferred. In the remainder of this
article we will focus on document inspection in particular. A typical first use
of the architectural knowledge reflected in the documentation is for auditors
to familiarize themselves with a software product. Once a certain level of com-
prehension has been attained, the documents are used as a source of evidence
for findings regarding the software product quality.

While document inspection is an important method in a software product
audit, it can also be a difficult method to use. The difficulty of performing
document inspection lies in the sheer amount of documentation that accompa-
nies most software products. Auditors are swamped with documentation, and
there is no single document that contains all architectural knowledge needed.
Moreover, a ‘reading guide’, which tells the auditors which information can
be found where, is usually not available up front. Auditors need to fall back
on interviews, a resource-intensive technique, to gain an initial impression of
the organization of architectural knowledge in the documentation.
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In general, from the interviews held we learned that auditors have three ma-
jor questions regarding software product documentation and the architectural
knowledge contained in it. These three questions are:

(1) Where should I start reading?
(2) Which documents should I consult for more information on a particular

architectural topic?
(3) How should I progress reading? In other words, what is a useful ‘route’

through the documentation to gain a sufficient level of architectural
knowledge?

From the above it should be clear that the auditors who perform a software
product audit would greatly benefit from tools and techniques that can di-
rect them to relevant architectural knowledge. We refer to the goal of such
tools and techniques as ‘Architectural Knowledge Discovery’ (de Boer, 2006).
A core capability of Architectural Knowledge Discovery is the ability to grasp
the semantic structure, or meaning, of the software product documentation.
Employing this structure transforms the set of individual texts into a collec-
tion that contains architectural knowledge elements and the intrinsic relations
between them. A technique that can be deployed to support the discovery of
directions to relevant architectural knowledge is Latent Semantic Analysis.

3 Latent Semantic Analysis

Amethod that can be used to capture the meaning of a collection of documents
is the construction of a vector-space model. Vector-space models are based on
the assumption that the meaning of a document can be derived from the
terms that are used in that document. In a vector-space model, a document
d is represented as a vector of terms d = (t1, t2, ..., tn), with ti (i = 1, 2, ..., n)
being the number of occurrences of term i in document d (Letsche and Berry,
1997).

Figure 1 depicts a matrix based on the vector-space model constructed for
three texts that were taken from the documentation of a software product. The
three texts used are representative selections from a use case definition (UC),
a service specification (SVC), and an architecture description (ARCH). To-
gether, the three document vectors corresponding to these three texts contain
approximately 90 distinct terms, excluding stopwords. This so-called term-
document frequency matrix represents the number of occurrences of each of
these terms in each of the three documents. The original document vectors
are hence extended with terms that did not occur in the document itself, but
do occur in one of the other texts. In these extended document vectors ti
is set to 0 if term i does not occur in the document. The cutout shows the
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Fig. 1. Term-document frequency matrix based on the vector-space model for three
software product documentation excerpts.

exact number of occurrences of six terms in the respective texts. For reasons
of non-disclosure, the terms ‘domain entity’, ‘use case’, and ‘business object’
have been substituted for the product-specific terminology.

Although the vector-space model in Fig. 1 captures some of the semantics of
the three texts, parts of the underlying semantic relationships are not repre-
sented very well. Based on Fig. 1 we can, for instance, only conclude that in
theory neither the use case definition nor the service specification has anything
to do with the term ‘SOA’ (an abbreviation for ‘Service Oriented Architec-
ture’). In practice, however, we would expect at least some relevance of the
term ‘SOA’ in the context of a service specification. Latent Semantic Analysis
allows us to find and exploit such underlying, or latent, semantic relationships.

Latent Semantic Analysis (LSA) relies on a mathematical technique called
Singular Value Decomposition (SVD). SVD decomposes a rectangular m-by-n
matrix A into the product of three other matrices: A = UΣV T . The matrix
Σ is a r-by-r diagonal matrix, in which the diagonal entries (σ1, σ2, ..., σr) are
singular values and r is the rank of A. As explained in (Deerwester et al., 1990),
SVD is closely related to standard eigenvalue-eigenvector decomposition of a
square symmetric matrix. In fact, U is the matrix of eigenvectors of the square
symmetric matrix AAT , while V is the matrix of eigenvectors of ATA. Σ2 is
the matrix of eigenvalues for both AAT and ATA. The interested reader can
find more technical details on SVD in advanced linear algebra literature such
as (Golub and Loan, 1996).

Since SVD can be applied to any rectangular matrix, it can also be used to
decompose a term-document frequency matrix such as the one depicted in
Fig. 1. After such a decomposition, depicted in Fig. 2, the matrices U and
V contain vectors that specify the locations of the terms and documents in a
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Fig. 2. Singular value decomposition of a term-document frequency matrix.

term-document space, respectively. The r orthogonal dimensions in this space
can be interpreted as representations of r abstract concepts (cf. (Landauer
et al., 1998)). The left-singular and right-singular vectors ui and vj indicate
how much of each of these abstract concepts is present in term i and document
j.

As outlined above, the original matrix A can be reconstructed by calculating
the product of UΣV T . Instead of a reconstruction, a rank-k approximation of
A can be calculated by setting all but the highest k singular values in Σ to 0.
This approximation, Ak, is the closest rank-k approximation to A (Berry et al.,
1994). Calculating Ak for a term-document space, such as the one depicted in
Fig. 1, results in the closest k-dimensional approximation to the original term-
document space (Letsche and Berry, 1997). In other words, by using SVD it
is possible to reduce the number of dimensions in a term-document space. It
is exactly this capability of SVD, depicted in Fig. 3, that is employed by LSA.

By using only k dimensions to reconstruct a term-document space, LSA no
longer recalculates the exact number of occurrences of terms in documents. In-
stead, LSA estimates the number of occurrences based on the dimensions that
have been retained. The result is that terms that originally did not appear in
a document might now be estimated to appear, and that other words that did
appear in a document might now have a lower estimated frequency (Landauer
et al., 1998). This is the way in which LSA infers the latent semantic structure
underlying the term-document space, and the way in which the deficiencies in
the semantics captured in a vector-space model are overcome.
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Fig. 3. Calculation of the closest rank-k approximation to the original term-docu-
ment space.

In the reduced dimensional reconstruction of the term-document space, the
meaning of individual words is inferred from the context in which they oc-
cur. This means that LSA largely avoids problems of synonymy, for instance
introduced because two different authors of documentation for the same soft-
ware product use two different terms to denote the same concept. One of the
authors might for instance use the full product name in the documentation,
while the other author prefers to use an acronym. Since the contexts in which
these different terms are used will often be similar, LSA will expect the prod-
uct acronym to occur with relatively high frequency in texts where the full
product name is used and vice versa. However, it should probably be stressed
here that we cannot expect LSA to improve the documentation other than
making it more accessible. LSA will happily accept wrong, superfluous, or
obsolesced documentation and guide anyone interested to ‘relevant’ parts of
that documentation. Nonetheless, for reasonably well-written documentation
the latent semantic structure LSA infers can be very well exploited to guide
the reader.

Figure 4 shows the result of the application of LSA to the term-document
frequency matrix from Fig. 1. The cutout shows the same six terms that
are shown in the cutout in Fig. 1, but this time the numbers correspond to
the estimated term frequencies based on retaining only 2 dimensions. Upon
inspection of this result, interesting patterns appear. For starters, the term
SOA is now expected to be present in the service specification as well, albeit
at a lower frequency than in the architecture description. This corresponds to
our intuitive notion that we would expect at least some relevance of SOA to a
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Fig. 4. Estimated term-document frequencies after the application of LSA to the
matrix in Fig. 1.

service specification. The negative expected frequency of SOA in the use case
specification is somewhat awkward to interpret mathematically, but might
perhaps best be regarded as a kind of ‘surprise factor’. In a sense, LSA tells
us not only that it does not expect the term SOA to crop up in the use case
specification (estimated number of occurrences = 0), but that indeed it would
be quite surprised to encounter this term there.

In general, a pattern seems to emerge in Fig. 4. If we regard the use case spec-
ification as the lowest level of abstraction text, the architecture description as
the highest level, and the service definition somewhere in between, we see that
low-level concepts (such as ‘business object’ and ‘use case’) have a diminishing
level of association as the level of abstraction of the text increases and vice
versa. LSA also seems to indicate that the term ‘service’ is a central concept in
the documentation: its estimated frequency is almost equal for all three doc-
uments. Those patterns stem from the semantic structure in the documents.
We can employ this uncovered semantic structure to guide an auditor to the
information needed.

4 Constructing a Reading Guide: A Case Study

The LSA technique introduced in Section 3 forms the basis of a detailed case
study in which we examine how the semantic structure discovered by LSA can
be employed to guide the auditors through the documentation. This section
presents the results of this case study.

Figure 5 depicts the interactive process by which an auditor is guided through
the documentation. Initially, auditors start with a set of unread documents.
Although the content of these documents is still unknown, the auditors have a
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Fig. 5. Schematic overview of the construction of a reading guide using the re-
duced-dimensional term-document space calculated by LSA.

goal that needs to be satisfied by reading (part of) the documentation. Exam-
ples of such goals are obtaining a global understanding of the software product,
investigating certain quality attributes, or locating (further) evidence for cer-
tain findings. The reduced-dimensional term-document space, which results
from LSA, can be inspected to locate documents that are highly associated
with a term that corresponds to the auditor’s goal. For instance - and this ex-
ample will be worked out in more detail below - the term ‘architecture’ could
be used to find documents that provide high-level information about the soft-
ware product. From reading the suggested documents, an auditor learns new
information including new - potentially product-specific - terms that can be
used to locate documents that provide more detail on the new terms. In short,
reading guidance consists of an iterative process of selecting and reading doc-
umentation, in which the auditor can use the architectural knowledge gained
from reading suggested documents to steer the selection of new documents.

We applied LSA to a total of 80 documents that were subject to the audit
that has been described earlier. The term-document frequency matrix that
was constructed for these documents contained a total of 3290 terms found
in the 80 documents. These 3290 terms did not contain very common words
(‘stopwords’) such as ‘a’, ‘the’, or ‘is’. It is common practice to disregard
these stopwords, since they tend to be evenly spread over all documents and
hence do not bear any distinctive meaning. The length of the document vectors
that make up the term-document frequency matrix had been normalized using
cosine normalization (Salton and Buckley, 1988) before LSA was applied. This
normalization reduces the effect of document size (i.e., the number of terms in
the document); without normalization, longer documents tend to be favored
over shorter documents when a document selection is made.

Using the technique described in Section 4, we calculated a 5-dimensional
approximation of the constructed term-document frequency matrix. The se-
lection of the number of dimensions to retain is an empirical issue (Landauer
et al., 1998), although some heuristics exist (Berry et al., 1999). The rank-
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5 approximation chosen here requires a 49% change relative to the original
term-document frequency matrix. Although this might appear as a rather
large change, the results obtained with this approximation suit our needs;
they can be effectively used to construct a reading guide.

The case study presented here reconstructs the early phase of the software
product audit, in which the auditors need to attain a global understanding of
the software product in order to further assess its quality. As in the previous
section, for reasons of non-disclosure the results presented here have been
anonymized.

In general, when auditors commence a software product audit they want to
gain an initial, high-level understanding of the software product. This global
understanding is necessary to successfully perform the audit, since it is a
prerequisite for subsequent audit activities. For instance, in scenario analyses
the supplier of the software product is asked how the product reacts to certain
change scenarios or failure scenarios. In order to judge the answer the supplier
provides, an auditor needs to have a thorough understanding of the software
product. Otherwise, the supplier might provide an answer that is incomplete
or inconsistent with the real state of the product, without this being noticed.

Auditors who want to attain overall comprehension of the software product can
be guided through the documentation using the semantic structure discovered
by LSA. A route that is preferred by all auditors we interviewed is to start
with high-level, global information and gradually descend to texts that contain
more detailed and fine-grained information. A single term that can be expected
to cover the high-level information about the software product well is the term
‘architecture’.

We can inspect the reduced 5-dimensional approximation of the original term-
document frequency matrix that LSA has calculated to find the documents
that best match the term ‘architecture’. In order to do so, it suffices to rank
the documents by their respective values in the row that coincides with the
term ‘architecture’ (the ‘architecture’ term vector). Documents that have a
high value in the ‘architecture’ term vector correspond to the documents in
which LSA expects the highest number of occurrences of the term ‘architec-
ture’. Recall that the highest-ranking documents do not necessarily include
the literal term ‘architecture’, but LSA inferred that it would be likely to
encounter the term ‘architecture’ in these documents; they are semantically
close to the meaning of ‘architecture’. In other words, these documents talk
about architecture, perhaps without mentioning the word ‘architecture’ itself.

The list in Table 1 shows the 10 highest ranked documents for the term ‘archi-
tecture’, together with the actual number of occurrences of ‘architecture’ in
these documents. Given this list, an auditor can simply start reading top-down,

11



Table 1
Top-10 documents that match the term ‘architecture’, with the number of occur-
rences of ‘architecture’ in the document.

Rank Document ID # ‘architecture’

1 79 44

2 39 1

3 44 3

4 41 2

5 78 10

6 46 0

7 45 1

8 42 1

9 40 2

10 49 0

in this case starting with document 79. However, some of these documents are
fairly large while others are rather small. In fact, documents 46 and 45 both
consist of only 2 pages. If an understanding of the software product can be
attained by either reading a (very) small document or by ploughing through
a large number of pages, the former is obviously preferred by the auditors.
Table 2 lists the same top-10 documents for ‘architecture’ also shown in Ta-
ble 1. In this table, however, the documents have been categorized according
to their size. The size categories have been defined as: very small (< 5 pages),
small (< 10 pages), medium (< 30 pages) and large (≥ 30 pages). The rank
according to Table 1 is given in parentheses, to illustrate the differences.

Table 2 shows that, given a preference for smaller documents, an auditor
looking for information about the architecture of the software product should
first read document 46. Note that this document does not contain the term
‘architecture’ at all (see Table 1). Nevertheless, upon inspection this document
indeed contains high-level ‘architectural’ information.

From document 46, the auditor learns for instance that the software prod-
uct consists of three high-level components, which we will call X, Y, and Z.
Furthermore, the document identifies two external systems that interact with
the software product as well as an organizational unit that will handle cer-
tain types of operational problems that might occur. Finally, the document
contains a list of intended uses of the software product.

Now that the auditor knows a little more about the software product, the
next document has to be selected. Since the auditor still has not read all
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Table 2
Top-10 documents that match the term ‘architecture’, grouped by size.

Rank Doc. ID # pages

Very small
1 (6) 46 2

2 (7) 45 2

Small
3 (5) 78 6

4 (10) 49 9

Medium

5 (1) 79 24

6 (2) 39 13

7 (3) 44 21

Large

8 (4) 41 30

9 (8) 42 48

10 (9) 40 31

‘architecture’ documents, there are in principle two options: either remain
with the ‘architecture’ documents and select a document from that list (e.g.,
document 45) or use the architectural knowledge obtained to delve into a
particular topic.

Good candidates for further exploration of the documentation are the compo-
nents X, Y, and Z. Since these components conceptually divide the software
product in three distinct parts, auditors might want to examine each of these
parts to further their global understanding. In its current form, the selection
of the right terms for exploration is a matter of experience. It is from experi-
ence that the auditor knows that the term ‘architecture’ is likely to be related
to high-level software product documentation. It is from experience that the
auditor suspects that the three components are good candidates for further
exploration.

Given the fact that the auditors want to gradually progress through the docu-
mentation, the degree of deviation of each of the components from the mean-
ing of the term ‘architecture’ is an indication of the route that should be
followed through the documents. In order to assess the deviation, a calcula-
tion can be performed of the similarity between the terms ‘architecture’ and
‘componentX’, ‘componentY’, and ‘componentZ’ respectively. This enables us
to identify how much the texts for which LSA infers a high association with
each of the components deviate from the text in document 46, which closely
resembled the meaning of the term ‘architecture’.

A common measure of similarity between terms (or ‘term-term similarity’) is
the cosine of the angle between the two term vectors (Berry et al., 1999). Let

13



ti and tj be the term vectors for terms ‘i’ and ‘j’ respectively, i.e., the rows
from Ak that correspond to the terms ‘i’ and ‘j’. Then the cosine of the angle
θ between these term vectors is cos θ = ti·tj

||ti||||tj || .

Table 3 shows the similarity of each of the terms ‘componentX’, ‘componentY’,
and ‘componentZ’ with the term ‘architecture’, calculated as the cosine be-
tween their respective term vectors. It becomes clear from these three values
that ‘componentX’ is semantically closest to ‘architecture’ followed by ‘com-
ponentZ’, and that ‘componentY’ is the least similar to ‘architecture’.

An interesting observation is that the relations between the three components
are not readily apparent from the text in the document itself, nor from the
names given to the components. Although the document does contain a pic-
ture that seems to suggest a layered ordering of the components, the text in
document 46 does not mention or reflect such a layered approach at all. Here,
by using LSA we have truly discovered architectural knowledge that the audi-
tor could not have distilled from reading document 46 alone. This discovered
knowledge can be used to further explore the documentation.

Based on the similarity of ‘architecture’ and each of the three components,
a logical next step to read the documentation seems to first read the top-
ranking documents for ‘componentX’, then for ‘componentZ’, and finally for
‘componentY’. By following this route, the semantic distance between the
document just read and the newly selected documents increases gradually.

Table 3
Cosine term-term similarity of ‘architecture’ and the high-level components

componentX componentY componentZ

0.9814 0.4096 0.7900

Analogous to the selection of the top-10 documents for the term ‘architec-
ture’, we selected the top-10 documents for each of the terms ‘componentX’,
‘componentY’, and ‘componentZ’. For each of the components, we analyzed
the top-10 documents found. The results of this analysis show an interesting
pattern in the selection of documents.

Due to its close semantic resemblance of ‘architecture’, shown in Table 3, the
top-10 documents that were found for the term ‘componentX’ are in fact the
same 10 documents that were found for ‘architecture’. The only difference is
a small change in the ranking of the documents. The top-10 documents found
for the term ‘componentZ’ (the next closest term to ‘architecture’) comprises
a mix of service specifications and architectural design descriptions, with a
clear focus on service specifications (the first four documents in the list are
service specifications). The top-10 documents found for ‘componentY’ are all
use case definitions.
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The route through the documentation found by analyzing the result of LSA
suggests that, using ‘architecture’ as a starting point, the auditors should first
read the architecture descriptions and similar high-level documentation, then
proceed with service specifications, and finally read the use case definitions.
Although LSA does not in and of itself know of the distinction between high-
level documents (i.e., architecture descriptions) and low-level documents (i.e.,
use case definitions), the documents that it suggests to read are grouped along
this axis. Moreover, from interviews with the auditors we learned that this is
indeed a route they prefer to follow to familiarize themselves with a software
product.

5 Validation of the use of LSA

The previous section shows how the application of LSA delivers results that
support auditors in finding a route through the documentation. The auditors
indicate that the results show correspondence to their preferences for selecting
and reading documents. In this section we empirically validate this correspon-
dence.

The knowledge discovered by using LSA can only be regarded valid if it fits the
expectations of the auditor. In other words, the discovered semantic structure
must conform to the auditor’s mental model of software product documenta-
tion and the architectural knowledge contained within. This means that the
validity of the result is in principle highly subjective.

Although an auditor’s mental model is subjective, the auditors who were inter-
viewed in the light of our case study on architectural knowledge use appear to
have commonalities in their mental model of software product documentation.
Perhaps the most obvious commonality is the categorization of documenta-
tion according to its level of abstraction. However, when confronted with the
question how they find the architectural knowledge needed without having
a reading guide available, most auditors reply that it is largely a matter of
experience. This means that, even if we can employ the commonalities in the
auditors’ perception of software product audits, we still need to validate our
results against tacit knowledge.

A method that can be used to elicit tacit knowledge is the repertory grid tech-
nique. This technique stems from personal construct theory, and was devised
by George Kelly (Kelly, 1955). The repertory grid technique can be used for
exploring so-called ‘personal construct systems’; the collection of implicit per-
sonal theories. The repertory grid technique is “an attempt to stand in others’
shoes, to see their world as they see it, to understand their situation, their
concerns” (Fransella and Bannister, 1977).
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The repertory grid technique investigates bipolar constructs that form some-
ones mental model of (part of) the world. Examples of such constructs are
past-future, good-bad, and everything-nothing. A particular method to elicit
these constructs is by presenting a person with triads of elements from the
domain under investigation. In our case, we could regard the individual doc-
uments as elements. When three of these elements are presented, the person
is asked in which way two of them are alike and how the third one is differ-
ent. This identifies a bipolar construct or axis that is apparently part of the
person’s mental model.

Based on elicited constructs, a so-called rank order grid can be constructed. To
do so, the person is asked to rank all elements according to how well they fit
the construct poles (e.g., from ‘past’ to ‘future’). This rank order grid can then
be further analyzed, for instance to determine the distances between different
elements or constructs (Jankowicz and Thomas, 1982). In our case, we derive
the distance matrix for the distances between documents as perceived by an
auditor.

Ideally, we would apply the repertory grid technique to the same documents
that were used in the case study described in Section 4. Unfortunately, using
80 elements in a repertory grid experiment is infeasible. Because of the expo-
nential growth of possible combinations (triads) of elements, the upper limit
for the application of the repertory grid technique is somewhere around 20
elements. For a validation of the LSA results, we therefore selected a second
audit project in which a much smaller number of documents were involved.

We understand that it is dangerous to attribute the validity of one project
to the validation of another, especially so if the projects differ in size. Nev-
ertheless, we believe since auditors already acknowledge that the LSA results
are sensible validation within a small project at the very least significantly
adds to the credibility of our application of LSA in larger projects. This is
even more so because LSA results are generally thought to improve for larger
corpora (Landauer et al., 1998).

For the audit project in which we applied the repertory grid technique, the
number of documents that had to be assessed was limited to 10. The audit
team consisted of three members: one project manager and two auditors. The
repertory grid technique was used in two experiments, one for each auditor.
Each experiment lasted for approximately two hours, until the auditors felt
they could not think of any more sensible (and distinctive) constructs. At the
time we conducted the experiment, the audit project itself had been finished
approximately two months earlier. To prevent distortions of the experiment
results because of the two month gap between audit and experiment – part of
the mental model might have been forgotten in the meantime – the triads pre-
sented to the auditors consisted of the actual (physical) documents, which the
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auditors could freely browse and read during the experiment. Two exceptions
were documents AS and DB (see below), which were no longer physically or
electronically available. Those two documents were represented by a proxy: a
single sheet of paper with the document’s title.

The 10 documents will be referred to by the following abbreviations:

• FM contains a functional data model.
• FD describes the functional design.
• XX is an addendum to FD. This is not immediately clear from the title of
the document, nor from the document’s layout.

• PD contains the process design.
• TP contains a test plan.
• UM is the user manual.
• RN is a set of release notes.
• IM is the installation manual.
• AS is an administration manual for the application server.
• DB is an administration manual for the database server.

Tables 4 and 5 depict the rank order grids for auditors 1 and 2 respectively.
The auditors were asked to rank the documents on a 1 to 5 scale. Hence, the
first row in Table 4 should be read as follows: auditor 1 considers the contents
of documents FM, FD, UM, and DB to be invariable over releases, whereas
RN varies per release. PD, TP, and AS are considered to be more invariable
than variable (but not completely invariable), while the opposite is true for
IM. XX is exactly in the middle. The constructs should be interpreted from
the auditor’s point of view in the context of the performed audit. In other
words, the construct ‘used by me’/‘not used by me’ in Table 4 means ‘(not)
used by auditor 1 in the audit’.

While many things could be said about the constructs that were elicited from
both auditors – for instance regarding the commonalities and differences be-
tween the two grids – we will not perform such an analysis here. Within the
grids themselves, clearly not all constructs (or dimensions) are orthogonal.
This, too, does not matter for the discussion at hand. It suffices to take the
two grids simply for what they are: a representation of the auditor’s own
mental model of the 10 documents used in the audit.

We analyzed the auditors’ rank order grids to calculate the distances between
the documents as perceived by the auditors. The resulting distance matrices
can be further analyzed, for instance to determine clusters of documents that
contain similar documents.

Figures 6 and 7 depict the document clusters according to auditor 1 and 2
respectively. The clusters have been determined with the single linkage hier-
archical clustering method (Johnson, 1967). The axis denotes the difference
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Table 4
Rank Order Grid Auditor 1

1 XX PD FM FD TP UM RN IM AS DB 5

invariable 3 2 1 1 2 1 5 4 2 1 varies per release

used by me 5 1 1 1 2 4 5 5 3 3 not used by me

input for development 1 1 1 1 3 5 5 5 4 4 output of development

prescriptive 1 1 1 1 3 5 5 4 5 5 descriptive

development 1 1 1 1 2 2 3 4 5 5 deployment

functionality 2 2 1 1 2 2 4 5 5 5 no functionality

diagrams expected 3 2 1 1 5 2 5 5 5 5 no diagrams expected

whole application 5 1 1 1 1 1 1 5 5 5 part of application

use 4 2 2 2 3 1 3 5 5 5 deployment

test 1 2 3 2 1 1 1 5 5 5 deployment

data flow 1 1 5 3 1 2 3 3 3 4 data entity

too global 5 5 5 4 1 2 3 5 3 3 too detailed

good size 5 5 4 1 1 1 3 1 3 3 overwhelming

Table 5
Rank Order Grid Auditor 2
1 XX PD FD FM TP RN UM IM DB AS 5

abstract 2 1 1 2 4 5 5 5 5 5 concrete

content 1 1 1 1 3 5 5 5 4 4 packing

input for development 1 1 1 1 3 4 5 5 4 4 output of development

descriptive / static 1 1 1 1 3 3 5 5 4 4 use / time dimension

app. functionality 1 1 1 1 3 3 3 4 5 5 system administration

design 1 1 1 1 3 4 3 5 5 5 deployment

conceptual 1 1 1 2 2 4 3 4 5 5 concrete/instance

high level 5 3 1 1 2 5 3 4 4 4 detailed

absolute 1 1 1 1 3 5 2 2 2 2 relative (wrt prev. version)

application 1 1 1 1 5 2 2 2 2 2 organisation

used by me 4 2 1 2 5 2 1 1 3 3 not used by me

between the documents, calculated as 1 minus the similarity. For instance, for
auditor 1 the similarity between documents FD and FM has been calculated as
0.87, therefore the difference between the two equals 0.13, as shown in Fig. 6.

Although there are some differences between the two cluster configurations,
both auditors seem to agree that there are two large document clusters. One
cluster contains documents FD, FM, PD, and XX. The other documents are
grouped in the second cluster. Note that we left AS and DB out of the figures
to allow for a fair comparison with the effect of LSA. Recall that those two
documents were no longer available, due to which LSA was unable to process
them. Had we included them in the cluster figures, they would have shown
as a small sub-cluster of two very similar documents (similarity according to
auditor 1: 0.96; auditor 2: 1.00). For both auditors this sub-cluster is most
similar to document IM (auditor 1: 0.79, auditor 2: 0.84).

To illustrate the effect of LSA on the document vector-space model, we applied
LSA to the 8 documents from the audit that were still available. We deter-
mined the distance matrices for both the term-document frequency matrix and
the LSA result. The distance measure used to calculate distances between two
documents is the cosine of the angle between the two corresponding document
vectors.
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Fig. 6. Auditor 1: Hierarchical documentation clusters.
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Fig. 7. Auditor 2: Hierarchical documentation clusters.

Figure 8 depicts the clusters for the original term-document frequency matrix.
Those clusters already show some correspondence to the two clusters which
the auditors perceive. However, documents XX and RN are two clear out-
liers. Moreover, the distinction between the two clusters (the cut around 0.5
similarity) is not very obvious.

The distinction between the two clusters is much clearer in Figure 9. This fig-
ure shows the clusters after LSA has been applied. The only outlier remaining
is the set of release notes (RN). A possible (but unverified) explanation might
be that the release notes follow a style different from the other documents.
The release notes consist mainly of a list of short, somewhat stenographic mes-
sages that describe the changes from one version to another while the other
documents contain more extensive text.

The hierarchical clusters leave the impression that the application of LSA
transforms the vector space model (initially represented by the term-document
frequency matrix) to better resemble the auditors’ mental models. A quanti-
tative expression of this ‘better resemblance’ can be given by calculating the
correlation between the various distance matrices.

To calculate the correlation between the distance matrices we have performed
a simple Mantel test using the zt software tool (Bonnet and Peer, 2002). In
this test, the null hypothesis is that the distances in one distance matrix
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Fig. 9. LSA: Hierarchical documentation clusters.

are independent from those in another. The results of this test are shown in
Table 6.

Table 6
Simple Mantel Test r and p-values

Auditor 1 Auditor 2

Term-document frequency matrix r = 0.627, p = 0.00184 r = 0.666, p = 0.00017

LSA r = 0.730, p = 0.00179 r = 0.871, p = 0.00057

The results of the simple Mantel test show that there is already a significant
correlation between the distances according to the term-document frequency
matrix and the auditors’ mental models. This corresponds with how the two
clusters already appear in Figure 8. However, the correlation between the
auditors’ rank order grids and the result of LSA are clearly higher. As a
matter of fact, the lowest correlation with LSA (r = 0.730 for auditor 1) is
comparable to the correlation between the rank order grids of the auditors
themselves. A simple Mantel test shows that the correlation between the two
auditors’ rank order grids is 0.738 (p = 0.00020).

In summary, the correlation coefficients calculated by the simple Mantel test
indicate that application of LSA yields a vector space model more similar to
an auditor’s mental model than merely counting the words in the documents.
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Visually, this shows as a better correspondence of document clusters with
the clusters according to the auditors’ perception. This empirical validation
supports our initial finding that the reading guide constructed by applying
LSA intuitively made sense for the auditors.

One thing that should again be stressed here, however, is that the result of the
application of LSA is very much dependent on the selected number of dimen-
sions to reduce to. Unfortunately we currently have no better guideline than
trial-and-error heuristics. Since there was only a small number of documents
used in this particular case, we were able to calculate the results for all pos-
sible number of reduced dimensions – the original term-document frequency
matrix has a maximum number of orthogonal dimensions equal to the number
of documents. This allowed us to select the number of dimensions – 4, for the
record – that looked most promising. When larger numbers of documents are
involved, this approach becomes infeasible quite soon.

6 Related Work

The application of Latent Semantic Analysis to architectural knowledge dis-
covery discussed in this article bears some relation to other work, both within
and outside of the software engineering research domain. The origin of LSA
lies in information retrieval. LSA was presented in 1990 by Deerwester et al. as
‘a new method for automatic indexing and retrieval’ of documents (Deerwester
et al., 1990). Later research also focused on the psycholinguistic significance
of LSA. Landauer and Dumais, for instance, use LSA to simulate the acqui-
sition of vocabulary from text, and present LSA as a theory of acquisition,
induction, and representation of knowledge (Landauer and Dumais, 1997).

Over the years, LSA has seen various application domains, including software
engineering. For instance, Maletic et al. applied LSA to source code of software
components in order to support program comprehension (Maletic and Mar-
cus, 2000; Maletic and Valluri, 1999). Another approach is taken by Hayes
et al., who use LSA to support the construction of requirements traceability
matrices (Hayes et al., 2005).

Our approach adds a new item to the list of LSA applications in software en-
gineering. Although construction of a reading guide for software product doc-
umentation also contributes to better program understanding, our approach
differs from the use of LSA by Maletic et al., who apply LSA to source code
artifacts. The effect of a reading guide is also not limited to better product
comprehension, but further supports the auditors in locating evidence for their
findings. Since architectural knowledge can be reflected differently in source
code and documentation, some of the evidence and knowledge that can be
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found in the documentation might not be available from the software prod-
uct’s source code.

7 Future Work

The work presented in this article gives rise to a number of issues that war-
rant further research. An overall issue that remains to be investigated is the
scalability of our approach. LSA proved to be feasible for a corpus of 80 docu-
ments, but in practice software product documentation might comprise many
more documents. Document sets of several hundreds of documents are not
uncommon.

Furthermore, the selection of the right number of reduced dimensions is still
difficult. In this area, a comparison of the auditor’s mental model with the
result of LSA – as shown in Section 5 – could possibly provide guidance to
selection of the right number of reduced dimensions, since the optimal number
of dimensions yields the best match of the LSA result with the auditor’s
perception. This of course implies that the auditor’s mental model is known.
Although determining this model is feasible by means of the repertory grid
technique, this is by no means a trivial task to perform. Especially not if this
has to be done for every new project in which LSA is to be used.

Besides these global issues, we have identified three main areas that are to be
further explored in the present context: enhancement of the workflow, the use
of background knowledge, and user interaction. This section describes each of
these areas in more detail.

7.1 Workflow Enhancement

The ‘workflow’ presented in this article, i.e., the selection of terms to explore
the documentation, is still rather ad hoc and depends heavily on the audi-
tor’s experience. One could wonder whether the same result would have been
obtained had the process been started with another ‘high-level’ term, such as
the name of the software product instead of the generic term ‘architecture’.

As a matter of fact, using the name of the product, or the high-level term
‘system’ instead of ‘architecture’, would have yielded a different result. The
documents that are suggested for these terms resemble the documents that
were suggested for ‘componentZ’, i.e., with an emphasis on service specifica-
tions. Document 46 would not have been suggested for any of these terms.
Depending on one’s opinion this may or may not come as a surprise. Some
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might argue that ‘system’ indeed carries more of a notion of implementation
than ‘architecture’. It does show, however, the importance of the selection of
the (initial) terms to explore. It also shows that the auditor would benefit
from assistance in this selection instead of having to rely on experience alone.
We would like to capture this kind of experience to enhance the workflow and
aid the auditor in selecting new terms to explore.

We believe that we can capture relevant experience and enhance the workflow
by introducing a feedback loop. By keeping track of terms that worked well
in earlier projects, the auditor can be presented with suggestions as to which
terms to explore in a new project. This helps the auditor to get the project
started (e.g., by suggesting initial terms such as ‘architecture’), but can also
circumvent potential dead-ends in the exploration by explicitly ignoring terms
that are known to have led to dead-ends in previous audits. Such suggestions
could perhaps also be mined from the documentation itself, using techniques
such as frequency profiling to locate uncommon words (with respect to a
standard corpus) that are likely to be part of a domain-specific vocabulary.
Sawyer et al. report successful application of frequency profiling in extraction
of domain terms from requirements engineering documents (Sawyer et al.,
2005).

While a feedback loop could relatively easily handle common generic terms
such as ‘architecture’, additional research is needed in particular to determine
how to cope with product-specific terminology such as ‘componentX’. The
reasons that auditors choose certain (product-specific) terms for further ex-
ploration need to be analyzed and translated to more generic ‘heuristics’ and
best practices that are applicable to other projects as well. An example heuris-
tic might be that, given the auditor’s goal of overall product comprehension,
terms that signify components are better candidates for further exploration
than terms that signify intended uses. This heuristic can change when the
auditor’s goal changes. If the auditor is looking for the satisfaction of certain
requirements, intended uses might be preferred over components.

7.2 Background Knowledge Incorporation

The ‘queries’ that are used in this article to explore the software product
documentation are logical from an auditor’s point of view. The auditor starts
with a high-level exploration of the software product’s architecture, gradually
zooming in to reveal more detailed architectural knowledge. Through Latent
Semantic Analysis, documents with diminishing levels of abstraction are iden-
tified: from architecture descriptions at the highest level through service def-
initions to use case specifications at the lowest level. However, this analysis
sequence still requires extensive human interpretation. As remarked earlier,

23



LSA itself has no notion of ‘high-level’ or ‘low-level’ documentation, nor of
any other domain-specific knowledge.

To further enhance the support for auditors reading the software product
documentation we intend to investigate the incorporation of relatively static
background knowledge in the automated analysis of the documentation. The
words ‘relatively static’ signify domain knowledge that does not change for
each audit. Apart from often used classifications such as high-level vs. low-
level documentation, examples of such background knowledge are:

• generic models, such as quality models (e.g., (ISO/IEC, 2001)) and process
models (e.g., (ISO/IEC, 1998));

• ontologies, for instance of architectural patterns (e.g., the Handbook of Soft-
ware Architecture by Booch (http://www.booch.com/architecture/)) and
their known relations with for example quality attributes, generic software
engineering ontologies (e.g., the ontology by the SEONTOLOGY project
team (http://www.seontology.org/)) and application-generic software ar-
chitecture ontologies (e.g., (Babu T. et al., 2007));

• ‘heuristics’, such as an auditor’s general preference for smaller documents
(see also Section 4).

Background knowledge can be incorporated when constructing a reading guide
by using it in the selection of suggested documents to read. Models and ontolo-
gies can for instance be used to broaden the scope when exploring a certain
term; they can be used to formulate rules of the form ‘if auditors are inter-
ested in X (e.g., ‘maintainability’) they are (probably) also interested in Y
(e.g., ‘changeability’, see also (ISO/IEC, 2001))’. Heuristics can for example
be applied to change the suggested order in which the documents should be
read, as demonstrated in Section 4.

Note that there is also some overlap of background knowledge incorporation
with the workflow enhancements described in Section 7.1. The heuristics (or
best practices) described in that section can in fact be regarded as background
knowledge. The translation of product-specific terminology to generic terms
used in these heuristics could very well be based on an ontology structure.

Background knowledge can hence be employed at two levels: to suggest terms
to explore, steering the workflow; and to suggest documents to read, steering
the analysis. Both affect the outcome of the process, the reading guide.

Using the correlation coefficient calculated by the simple Mantel test, we can
closely monitor whether adjustment of our method improves the result. We
could, for instance, assess the effect of the incorporation of background knowl-
edge in the analysis of the documentation. Such an assessment consists of a
comparison of the distances perceived by the auditors with the distances be-
fore and after incorporating background knowledge. If the result of the analysis
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corresponds more to the auditor’s mental model when background knowledge
is taken into account, this means that using this background knowledge is
indeed an improvement. Finally, the effect of using other techniques instead
of, or together with, LSA could be easily judged analogous to the assess-
ment of the incorporation of background knowledge. Techniques that could
further improve architectural knowledge discovery results include techniques
that, complementary to LSA, exploit certain more structured properties of the
documentation. If, for example, a set of documents is structured according to
a particular template – which is not uncommon – knowledge of this template
could be used to guide the reader to particular parts of the documentation.

7.3 User Interaction and Tool Support

A final area in which further research is needed is the area of user interaction.
The results presented in this article all show direct operations on the reduced-
rank approximation of the original term-document frequency matrix. This
matrix is probably not the best form of presentation for the end users, i.e.,
the auditors.

In order to be useful and used in an auditor’s everyday practice, the techniques
discussed in this article should be implemented in an interactive environment
that abstracts away from the underlying estimated term frequencies. This
environment should provide intuitive support for the workflow discussed in
Section 7.1.

A particular area that requires further research is visualization of the reduced-
dimensional term-document space. A desirable visualization supports both
locating terms to explore and locating documents to read. Ideally, this would
be presented to the auditors as a space through which they could navigate
in search of the architectural knowledge they need. In this space, distances
between terms and/or documents have actual meaning (cf. the three terms in
Table 3). Such a visualization requires a projection of the reduced-dimensional
term-document space to two - or at most three - dimensions. Through such
a visualization, auditors can obtain quick visual clues as to which documents
are closely related and how to proceed reading the document set.

8 Architectural Knowledge Discovery in a Broader Scope

This article considers Architectural Knowledge Discovery (AKD) as a means
to construct a reading guide for software product audits. Although this ap-
plication is undoubtedly valuable, we believe AKD has merit in a broader
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scope.

We envision AKD as one particular technique used in a broad range of archi-
tectural knowledge management tools and methods. The role of AKD would
mainly be to refine existing (codified) architectural knowledge from such di-
verse sources as documents, email, meeting minutes, and source code. Those
sources contain mainly unstructured (documents, etc.) or at best semi-structured
(source code) information. Refinement by AKD would therefore mainly consist
of adding structure to this information.

AKD could play a major role in the transition from personalization to codifi-
cation (cf. (Ali Babar et al., 2007)). In the early phases of architecting, often
little attention is paid to a structured description (codification) of the archi-
tectural knowledge that is created, such as the architectural design decisions
taken and the alternatives considered. More emphasis is usually put on per-
sonalization, i.e., knowing who knows what and discussing options and issues
directly with peers. It is usually only after the fact – if ever – that the ar-
chitectural knowledge created during this process is captured in architectural
descriptions and other documents. However, this early architecting phase often
leaves many traces in for example minutes, emails, or forum discussions. AKD
could be employed to mine and structure those traces of unstructured infor-
mation, thereby providing semi-automated support for effective codification
of the architectural knowledge.

As a final remark, our current use of AKD with LSA concerns a final set of
documents. We may also envision using LSA in a forward-engineering sense, to
judge the quality of the evolving (architectural or otherwise) documentation of
a system, and giving guidelines as to where the documentation needs attention.

9 Conclusion

Document inspection is a method used in software product audits to distill
architectural knowledge from the software product documentation. Unfortu-
nately, document inspection is often hard to perform. Auditors are in need of a
reading guide that tells them where to start reading, how to progress reading,
and which documents to consult for more detail on a particular topic.

We have demonstrated how auditors can be guided through the documentation
in a case study in which we reconstructed the early phase of a software product
audit. In this phase, the auditor has not read any documents yet and needs
to attain a certain level of understanding of the software product.

To construct a reading guide, we have employed the semantic structure dis-
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covered by Latent Semantic Analysis. This semantic structure is used as the
basis for an interactive process in which auditors indicate terms that they
want to explore and are subsequently given reading suggestions for documents
containing information about these terms. The knowledge obtained from the
suggested documents can give rise to new terms to explore, and the discovered
semantic structure can be used to determine the order in which the terms -
and corresponding documents - should be explored.

Using the repertory grid technique, we were able to elicit the mental model
of documentation from two auditors. A comparison of the auditors’ mental
models with the result of the application of LSA shows that LSA’s vector-space
model is closer to the auditors’ idea than a naive term-document frequency
matrix.

We have identified three areas of future work: workflow enhancement, use of
background knowledge, and user interaction. We intend to direct research ef-
forts toward each of these areas in order to further improve the work presented
in this article. Apart from the construction of a reading guide, we envision
the application of architectural knowledge in a broader scope. Architectural
knowledge discovery could be employed to refine unstructured traces of the
early architecting phase, thereby aiding effective codification of architectural
knowledge.
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